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Abstract

The dynamical model of the train is a simplified linear lumped-parameter one. The
steady-state tractive effort is specified by the points of the bivariate, control and velocity
dependent tractive effort performance curves. The train is equipped with an airbrake sys-
tem. The vehicles in the train are characterized by the traction resistance functions, while
the railway line is specified by the arclength-dependent track-slope and track-curvature
functions. The equations of motion of the train are numerically solved under real-time
conditions. The drive and brake controls are given from the computer keyboard. The
results of the real-time simulation can be continuously followed on the computer screen.
Statistical analysis of the results and visualization can also be initiated through activizing
evaluation software.

Keywords: train dynamics, train operation, real-time simulation.

1. Introduction

In this paper, the train is modelled as a complex dynamical system, which
moves along a specified railway line under the influence of tractive and
resistance forces. The tractive influences are caused by the tractive effort
exertion of the traction unit and by the track-directional components of the
gravity force in case the vehicles are actually in down-hill position on the
track. Resistance influences are caused on the one hand by the traction
resistances, i.e. the basic resistances of the vehicles in the train and by the
track-directional components of the gravity force of the vehicles that are
actually in up-hill position on the track, or are positioned actually in the
curved track sections, as well as by the brake application-induced braking-
effort exertion, on the other. The track conditions for the considered whole
railway line are specified, i.e. the inclination tangent and the radius of
curvature as a function of the track arclength are numerically given by
piece-wise linear functions e(s) and R(s). The longitudional dynamics of

!This research was supported by the Hungarian Ministry of Culture and Education,
Grant No. 82/94
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Fig. 1. Train at the peak area of a hill

a specified train operating on a specified railway line depend fundamentally
on the activity of the driver, in other words, on the actual variation with
time of tractive effort control function uj(t) and the braking-force control
function uz(t). The complex dynamical model and the motion equations, as
well as the real-time simulation method will be introduced, together with
the statistical evaluation diagrams of the realised operation process. The
results of the investigations can be applied to the design of new traction
units by utilizing the information received from the simulation of the future
operation conditions on specified railway lines.

2. Complex Model for the Train Longitudinal Dynamics

In Fig. 1, a train is sketched, which is passing through the peak area of a
hill. The vertical track profile is characterized by the function of inclina-
tion tangents vs. track-arclength e = e(s). The gravity forces acting on
the vehicles and the track-directional components of those, as well as”the
longitudinally sprung intervehicle connections are also shown in the Figure.

In Fig. 2, the top view of the train is shown, distances s1,s2,...,8N
between the gravity point of the locomotive and the cars in the train are
also indicated. The curved track section is specified by giving the radius of
curvature R and the initial and last points of the circular arc. In this way
function R = R(s) (or 1/R(s)) can be determined for the whole railway line
considered.

In Fig. 8, the longitudinal vibratory sub-system, i.e. the dynamical
model of the train is visualized. The model is a lumped-parameter one with
linear inter-vehicle springs of stiffness s and dampers of damping coefficient
d. Longitudinal displacements z;, masses m;, rotating mass factors v;, basic
resistance forces Fj and braking forces Fp;i = 1,2,..., N as well as tractive
effort F, are clearly indicated.

It should be mentioned that the basic tractive resistance forces Fb'
are velocity-dependent for non-zero velocities, while in case of zero velocity
(standstill) they depend on the resultant of the non-resistance forces acting
on the vehicles in question.
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Fig. 8. The train as a longitudinal vibratory system

The tractive effort acting on the train is exerted by the locomotive
situated in the front of the train. In the dynamical simulation procedure,
the tractive effort is treated as a three-variate function F(uj,v,t) which
depends directly on drive control uj, velocity v and time ¢. The braking-
force exertion is realized vehicle-wise, i.e. regularly each vehicle in the train
has its own brake-gear. The braking force is treated by using a set of three-
variate functions Fj(ug,vs,t) ¢ = 1,2,...,N. In the further analysis, a
pneumatic brake system is dealt with, and the pneumatic transients are
treated in the framework of a simplified model.

In Fig. 4, the inputs and outputs of the train as a dynamical system

are visualized.

3. Subsystem ‘Traction Resistances’

The basic traction resistance force acting on the i-th vehicle is given by
formula:

i _ k(a;v? + bilv] + ¢i)signv if o] > ¢,
Fb(”’z F)= { min{ke;, | F|} sign L F if || <e, (1)
where k = mg/1000, and a;, b;, ¢; are vehicle-specific constants, (m is

the mass of the vehicle in kg, g is the gravity acceleration in m/sz, [a;] =
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Fig. 4. Inputs and outputs of the train

Ns2/kNm?2, [b;] = Ns/kNm, [¢;] = N/kN), while > F is the resultant of
the non-resistance forces acting on the ith vehicle (in N). In Fig. 5 the
performance surface of the bivariate function F, = f(v,). F) is shown.
The characteristic discontinuity of the surface over axis Y F is very well
recognizable.

In order to determine the track-directional component of the gravity
force acting on the vehicle in the train, it is necessary to characterize the
inclination condition of the track as a function of the track arclength. The
derivative of the vertical track profile y(s) gives the tangent of inclination
angle a, which can be considered equal to sin « in case of small a values
coming into question for railway tracks. In the simulation method the track
inclination will be treated in mille, i.e. instead of dy/ds the value e(s)%0 =
1000 dy/ds = 1000 tg o will be taken. It is clear that the track-directional
component of the gravity force can be calculated by using formula F, =
mg sin @ & mgtga = mge(s)/1000. If F, is positive, its value represents the
track inclination resistance, while a negative value of F, means an additional
tractive effort caused by the downhill position of the vehicle considered. The
sign of Fe is uniquely determined by that of e(s), namely in uphill position of
the vehicle e(s) is positive, while in downhill position e(s) is negative. Due to
this rule of signs, force F, should be substituted into the equation of motion
with a negative sign, which automatically ensures the correct mechanical
conditions. In Fig. 6, the graph of function e(s) is visualized. It should be
noted that in case of changing inclinations, the piecewise constant sections
of e(s) will be connected by a linear transition line the slope of which is
determined by the rounding circle of radius 4000 m laying in the vertical
plain.

In Fig. 7, the track curvature is shown as a function of the track
arclength. The curvature is positive if the curved track deviates to the right
from the tangent straight line situated prior to the curve in question. The
elaborated simulation method takes into consideration also the transition
curves located between the straight and circular track sections.

It is assumed that the curvature in the transition curves is a linear
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Fig. 5. Performance surface of the basic resistance force
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Fig. 8. Block diagram and set of stabilized tractive effort curves

function of arclength s,v as it is plotted in Fig. 7. The half-length of the
transition curve depends upon the radius of the circular section to be con-
nected with the preceding or following straight section.

4. Subsystem ‘Tractive Effort Exertion’

The tractive effort exerted actually by the traction unit depends on the
actual value of control uj, velocity v, and due to the transients also a direct
time-dependence should be reckoned with. It is to be mentioned that the
time constant T, of the transients is of order of magnitude 0.01 sec. It can
be considered that for the steady-state tractive effort exertion a bivariate
FX°(up,v) function can be taken. The values of the latter belong to the
case of limit transition t — oo, i.e. the stabilized steady-state values are
characterized. In Fig. 8, the block diagram and the set of performance
curves representing function Fy°(uj,v) are shown.

If control uj changes in a jump-like way, the tractive effort will also
change but the latter change is no longer jump-like. An approximate expo-
nential expression can be formulated for the non-steady-state tractive effort
exertion as follows:

t—tiy t—t;;
Fy(u1,v,t) = Fje Tz + F°(uj,v) (1——6_ T; ) , (2)
where ’

t;; : the instant of transition in drive control function level

up =1 to level u; = j,
T, :  time constant of the tractive effort transients
t > ti : the time instant after transition point #;;,
F; . the tractive effort value prevailing due to control level

u1 = 1 just prior to time ¢;;,
FX°(u1,v) : the steady tractive effort belonging to the control level

u1 = j in case of t — oo.
In Fig. 9, the tractive effort transient is shown, which is caused by
transition from control level u; = 7 into that of u; = j.
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Fig. 9. Transient time function of the tractive effort in case of jump-like
change in u;

5. Subsystem ‘Braking Force Exertion’

The approximate quasi-static exponential expression for the decrease in pres-
sure in the main pipe line as a function of time ¢, the instant of transition
t;; in control function ug(t) and the actual pressure values p* and pstqc as
well as time constant Ty will be:

_ t_t’.’l'

_t—t,"j
p(t) = p*e s +Pstac(u2) (1 — € Ty ) . (3)

In the above formula the following designations were used:

tij the instant of transition in brake control function from
level ug = 7 to level ug = j

Ty : time constant of the pressure transient in case of brake
application and release

t >t : the time instant after transition t;;

p* :  the pressure value prevailing due to control level ug = i
Jjust prior t;;

Pstac(u2) : the steady pressure belonging to the control level us =
7 in case t — oo

Po : maximum pressure level in the main brake pipe-line

Pm =po—p  the actual pressure in the main brake pipe-line; in case
of the 7th vehicle a signal propagation retardation 7
should be reckoned with pﬁn(t) =py—plt —75), i =
1,2,...,N.

pi : the brake cylinder pressure at the ith vehicle: pi(t) =

Kp(t — 1), where K is constant.
In Fig. 10, the brake cylinder pressure vs. time functions are plotted
for the locomotive (pl) and for the i-th car (p.). The time shift r; due to
the pressure signal propagation velocity is clearly indicated.
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Fig. 11. Flowchart of the braking force exertion

The total brake-block force acting on the ith vehicle can be computed
by the following formula: ) o
Ff = pLAk", (4)
where Ai is the area of the brake cylinder cross-section and k' is the torque
ratio (mechanical advantage) of the brake leverage for the ith vehicle. With
the knowledge of the virtual friction coefficient function ﬂi(pz,v’) belonging
to the brake-block wheel tread friction connection, the braking force acting
on the ith vehicle can be computed by the following formula

Fh = Fiii(ph,v), i=12,...,N. (5)

In the formula, pi stands for the actual value of the brake-block pressure,
while v¢ is the velocity of the ith vehicle.

The flowchart of the braking-force exertion is shown in Fig. 11. Brake
control ug and pressure pg in the main air reservoir of the locomotive de-
termine the main pipeline pressure pin in the locomotive, from which the
appropriate pipeline pressures pp,; i = 2,3,...,N can be determined by
using the time-shifts mentioned above. With the knowledge of the pipeline
pressure time functions for each vehicle in the train, also the time functions
of the brake-cylinder pressure can be determined by taking into considera-
tion the approximate proportional and ‘counter-tact’ variation character of
the pipeline and brake-cylinder pressures.

6. Subsystem ‘Unified Resistance Forces”

The basic traction resistance force, the curving resistance force and the brak-
ing force are originated from certain torque effects influencing the motion
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of the wheelsets. The peripheral force corresponding to some of the torques
mentioned above can be considered as the ‘unified resistance force’.

The ‘unified’ resistance force Fypp (in N) can be computed by using
the train of thoughts similar to that described in case of traction resistances.
The formula has the following form:

min{|F,(v)]; K (av? 4 blv| + ¢)+
_ ) +1FRl + IFBl} sign v i ol > e
ForB =\ 1in{| T F|, min{|Fa(0)], K c+ (6
+|Fr| + |FB(0)[}} sign 2 F if vl <e

where the following designations were used:

v :  the velocity of the vehicle in m/s

F,(v) : the maximum adhesion force transmittable in the
wheel-rail connection without macroscopic sliding as
a function of travelling velocity ([Fa] =N)

K : mg/1000 the weight of the vehicle in kN
a,b,c: coefficients of the quadratic specific basic trac-
tion resistance vs. velocity function, [a] = st/mkN,
[6] = Ns/mkN, [¢] = N/kN

> F . the resultant of the non-resistance forces acting on the
vehicle at zero velocity, i.e.
o tractive effort exerted by the drive system,
e track-directional component of the gravity force and
e forces acting on the vehicle through the buffer and

drive-gears from the adjacent vehicles

Fp . the curve resistance force acting on the vehicle in N

Fp :  the braking force acting on the vehicle in N

F,(0) : limit value of the maximum adhesion force at zero ve-
locity in N

Fg(0) : limit value of the braking force at zero velocity in N

It should be noted that Fg depends on velocity v and actual brake
control ug, while Fp(0) also depends on ug. Curving resistance force Fgr
depends upon the distance covered by the vehicle (s). The force values
building up 3. F can also depend on the distance covered by the vehicle
in question and due to the longitudinal connection forces (transmitted by
the draw-gears and buffer-gears from the adjacent vehicles), forces ) F can
depend on distance covered sj,s2 and velocities vy, vg of the adjacent vehi-
cles, respectively. In addition, in case of a traction unit, )  F can depend
also on the actual drive control uj. In this way, in a general case the unified
resistance force has eight independent variables as indicated in the following
expression:

Forp = f(s,v, Y F(s1,v1,8,v,82,v2,u1),u2) - (7)
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Fig. 12. Characteristic pair of drive and brake control functions

Formula (7) shows the complicated structure of the unified resistance force
introduced in (6).

7. Simulation in the Time Domain Controls from the Keyboard

Control functions ui(t) (drive control) and wus(t) (brake control) are the
inputs of the system to be simulated, and in our model both functions are
step functions taking finite number of integer values due to the following
definitions:

ui(t) € {0,1,2,...,15}
us(t) € {0,-1-,2,...,-15}

Control functions in question are plotted in Fig. 12.

The integers representing the possible levels to be taken by the control
functions are corresponding to keyboard positions (buttons), chosen in an
appropriate way. If one pushes a keybord button, the control takes an integer
value belonging to the position in question, and its value remains unchanged
up to the subsequent pushing of any other keyboard button assigned for the
possible values of the control function in question. The partition of the
keyboard positions used by the authors is shown in Fig. 13.

The mathematical description of the train motion in a specified com-
plex environment is carried out by using a set of non-linear differential equa-
tions. If the number of vehicles in the train is N (i.e. mechanical system
with N degree of freedom is dealt with) then the state vector is of 2N dimen-
sion. State vector Y contains the velocities in coordinates 1,...,N; and the
displacements in coordinates N + 1,...,2N. The set of motion equations
written for state vector Y(t) has the following form:

Y = AY + F(Y,u1,us,t), (8)

where 2N x 2N coefficient matrix A is the so-called system matrix, which
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Fig. 18. Brake and drive controls from keyboard
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Fig. 14. Diagrams and numerical information on the computer sereen

has the following special structure:

-M~'D -M~!s
A= E o : (9)
In the expression of matrix A, S is the N x N stiffness matrix, D is the N x N
damping matrix, M is the N x N mass matrix, E is the N x N unit matrix
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Fig. 15. Joint distribution of the drive control and speed

while 0 is the N x N zero matrix. Vector-valued function F(Y ,u1,u2,?) is of
a very complicated structure and is strongly non-linear. The set of motion
equations is to be solved numerically (Euler’s method, Rung-Kutta method,
etc.) Characteristic time step for the real-time simulation is of At = 0.01
sec order of magnitude.

The set of diagrams displayed on the computer screen is shown in
Fig.14. The control functions, the acceleration and velocity functions of
the locomotive, as well as the time function of the coupler force arising in
the draw and buffer gear of the locomotive, and that of the operational
evaluation index can clearly be identified. In the lower part of the Figure
the numerical information characterizing the simulation process is visible.

s
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Fig. 17. Relative frequency histogram of the coupler force between the loco and
the adjacent carriage

8. Statistical Evaluation of the Responses

In the course of the simulation procedure the relative frequencies of certain
events are continuously computed. The events in question are defined by
using a partition of the ranges of the state vector coordinates and other
state dependent quantities, as well as the controls.
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For the sake of visualization, joint probability distribution of the drive
control and the locomotive velocity P{u; € Auj,vjoco € Avj} is approxi-
mated by determining the relative frequency histogram shown in Fig. 15.
The joint probability distribution of the brake control and the locomotive
velocity P{us € Au;,vjoco € Avj} is treated in a similar way in Fig. I6.
The simulated coupler force between the locomotive and the first carriage,
as well as the acceleration process of the locomotive were also evaluated
by determining relative frequency histograms, which approximate to prob-
ability distributions P{Fgy € AF;} and P{a)oco € Aa;}, respectively. The
diagrams are plotted in Figs. 17 and 18.

The relative frequency distribution can be used in the course of design-
ing the drive system components, e.g. the roller bearings, the gear-wheels
and the shafts, as well as the components of the brake gear, e.g. the linkages
and the leverages. The knowledge of the relative frequencies belonging to
the different loading conditions makes it possible to carry out dimensioning
procedures taking into consideration the fatigue phenomena.

9. Concluding Remarks

The investigations of the authors into the longitudinal dynamics of trains
in complex environment, the elaboration of the simulation models and pro-
grams and real-time simulations carried out made it possible to summarize
the following statements:

o The real-time simulation of the train longitudinal dynamics can be car-
ried out by using simplified dynamical model and approximate process
description for the airbrake system.

e The continuous simulation requires the unified treatment of the resis-
tance forces acting on the vehicles.

o The numerical integration in the real-time simulation requires a time
step of order of magnitude 0.01 sec.

o The elaborated simulation procedure makes it possible to predict the
loading conditions of the components built into the vehicle’s structure
and the drive/brake system already in the period of the vehicle design.
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o The predictions mentioned appear in the form of probability approxi-
mating relative frequency distributions and further statistical param-
eters.

o The simulation procedure can yield also values characterizing the en-
ergy consumption and environment pollution characteristics of the ve-
hicle realized in the course of the operation process.
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Abstract

The alteration in wheel and rail profiles due to wear involves considerable vehicle and
track-maintenance costs, and influences the loading capacity of the rails, as well as the
operation safety and riding comfort of the vehicles. In the past five years, a vehicle
dynamics-based numerical procedure was elaborated at the TU of Budapest to predict
the wear-caused wheel profile alterations and to maximize the mileage performance by
selecting the optimum axle-box guidance stiffnesses in case of traditional running-gears
operating on a specified railway line [1]. This paper introduces the fundamental principles
and conditions decisive in the dynamical and tribological procedure mentioned, and deals
with an extension of it. This extension regards the wheel wear analysis and mileage per-
formance maximization of the vehicle in case of stochastic operation on a given railway
network. The network is characterized by its graph. The operation process is described in
the framework of a semi-Markovian model [12], [L3]. The elaborated stochastic simulation
and optimization method is visualised for a simple railway network by introducing the
two important two-parameter stochastic fields, namely those of the wheel profile and the
mileage performance.

Keywords: stochastic simulation, railway wheel-profile wear.

1. Introduction

The wear simulation technique based on a non-linear dynamical track/vehicle
model - elaborated by the Department of Railway Vehicles at the TU of Bu-
dapest for the numerical investigations into the wheel-profile wear of railway
vehicles operating on a specified railway line [1], [10], [11] - is extended by
the authors. The goal of the extension is to describe the propagation of
the wheel-profile-wear under stochastic operation conditions of the vehicle
on a whole railway network as a function of the distance covered by the
vehicle. The stochastic operation process taking place on the network is
treated on the basis of the theory of semi-Markovian stochastic processes
[12], [13]. The statistical characteristics of the bivariate stochastic field de-
scribing the wheel profile alterations and also the stochastic field describing
the mileage performance defined as a function of the longitudinal and lateral
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axle-box guidance stiffnesses are analyzed. The expected value function and
the standard deviation function of the latter stochastic field makes possi-
ble to optimize the axle-box guidance system by maximizing the expected
mileage performance between two profile renewals.

Track-vehicle model

Vehicle subsystem Track subsystem

Fig. 1. Lumped-parameter track—vehicle model
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2. Summary of the Wheel-Wear Simulation on a Specified
Railway Line

2.1. Introductory Remarks

The possibility of predicting the wheel wear process of a railway vehicle is
connected with the numerical feasibility of simulations based on:

e appropriate dynamical models,
o rolling contact theory, and
e wear hypothesis.

The early investigations into the wear phenomena of railway wheels
focused on the wear propagation under simple and steady operation condi-
tions, e.g. constant velocity operation on an ideal straight track [2], [3], [4],
[5], [6]-

The most frequently used wear hypothesis was formulated in terms of
the proportionality between the specific energy dissipated over the contact
surface and the specific mass removal for the unit of the distance covered [6].

In the following, the model elaborated for simulating the wear propa-
gation on the wheels running on a specified railway line consisting of straight
and curved sections will be summarized.

This model was the basis of the research into the more complicated
wear process simulation concerning the stochastic operation on a specified
railway network.

2.2. The Track-Vehicle Dynamical Model

The lumped-parameter track—vehicle model is shown in Fig. 1.

The vehicle body, the bogies, the wheel sets and the discrete masses
representing the track inertia are modelled as rigid bodies. The spring struc-
tural connections between the rigid bodies mentioned are modelled by piece-
wise linear characteristics, while the dampers supposed to be parallel to the
former ones are definitely linear. The used wheel and rail profiles can be
practically arbitrary, the only requirement is to give their points on a later-
ally equidistant sequence of 1 mm spacing.

The track can be composed of specified straight and curved sections
coming one after another in an arbitrary order, see Fig. 2. The transition
curves can be approximated by circular arcs of non-equal radii.

o The track can be laterally ‘imperfect’, i.e. a stochastic lateral irregu-
larity can be taken into consideration. Omn the basis of the measured
spectral density function, lateral irregularity realization functions are
generated for the two rails as based on simulation technique by random
number generation [8]. The lateral irregularities as excitation sources
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are taken into consideration in both the straight and the curved track
sections.

The vertical wheel loads are constants on the straight sections, while in
curves the quasi-static compensation of the centrifugal forces is carried
out [7}.

The wheel-rail contact on the wheel tread is treated as a creep-dependent
force transfer spot, the creep coefficients are treated by Kalker’s linear
theory [9]. ‘

The longitudinal and lateral contact forces, as well as the spin mo-
ment are bounded by the values based on the constant sliding friction
coeflicient.

The flanging is considered as a conditional, laterally elastic and damped
linear connection between the wheel set and the mass representing the
rail inertia.

In the model, a specified constant torque is acting on each wheel set,
which represents the resultant of the rolling resistance, the journal
friction and the eventually acting tractive or braking torques.

It is always assumed that no braking torque is exerted by frictional
tread braking, i.e. the wear phenomenon on the wheel tread and the
flange are caused exclusively by the wheel-rail contact.

2.8. Remarks on the Simplified Operation Conditions

The vehicle-track model in question takes into consideration track section-
wise constant travelling velocities and torques on each wheel set. It is rea-

sonable to use a constant average travelling velocity along the whole railway
line examined, and also an average torque to act on the wheel sets on the

Fuig. 2. Straight and curved sections of the track
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Fig. 3. The principle of physical smoothing

basis of a preliminary ‘speed — distance covered’ analysis. Tractive and
braking torques vs. distance covered functions can also be determined for
the whole length L of the line between terminals A and B.

Average velocity and torque can be calculated by formulae

B

1 : 1
VaAB = Z/]u(s)]ds and Mpgap = f/|M,(s)|ds . 1)
A A
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2.4. Wheel Profile Alteration Due to Wear

The wheel profile alteration due to wear caused by the rolling contact of the
wheel and railhead is a rather slow process. Debris continuously leaves the
wheel tread and recurrently the flange surface being in sliding contact with
the railhead.

Principally, each angular displacement increment dy of the wheel im-
plies a certain material removal Adm from tlie contact spot on the wheel.
This material loss is very slow, and a recognisable variation in profile geom-
etry appears only over hundred km-s of distance covered by the wheel. This
survey is the basis of the discretization technique used in the elaborated
wear simulation procedure.

The fundamental idea is to consider the actual wheel profile and rail-
head profile as the basis of the contact geometrical and dynamical opera-
tions. The latter ones result in the wear-load distribution along the wheel
meridional profile. This wear-load distribution is considered valid for a given
distance covered by the wheel, and the profile alteration, i.e. the reduction
in rolling radii is carried out by using appropriate smoothing procedures..
In this way, a discrete step of profile alteration due to wear is done [10].

The resulted new wheel profile takes over the role of the initial profile,
and a subsequent discrete step can be done, etc. The outlined procedure
means that the material is removed step-wise, whereas the contact condi-
tions are considered to be constant in each step.

The errors caused by the discretization are balanced by the physical
and mathematical smoothing procedures, which are built up on the basis of
the rail and wheel profile compatibility and Ca spline method.

Regarding the tread contact, the used wear hypothesis connects the
specific mass removal dm/ds from the contact band with the specific work
done by the creep forces by proportionality

om
0s
In the formula, k, is the wear coefficient, F, and F, are the longitudinal

and lateral creep forces, while v, and v, are the longitudinal and lateral
creepages, respectively. In case of flange contact

=k, (Fpvs + Fyuy) . 2)

(3)

Here k; is the sliding wear coefficient, Ff is the friction force on the flange,
Av; is the sliding velocity and v is the travelling velocity.

Mass removal Am from the contact surface A over a small distance of
rolling As can be calculated based on relationship

om

Am = —As . 4
" Js y )
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Mass Am should be distributed along that interval(s) of the wheel profile
which intersects the contact area.

The Hertzian pressure ellipsoid is divided into ‘slices’ by parallel planes
being in a lateral distance Ay from each other. The volume of the pressure
ellipsoid is V, while that of the i-th slice is V;. Then, weighting factors
X =V;/V;i=1,2,...,n are defined, and the i-th ‘slice’ will have a mass
fraction removed by wear

: o
L Am; = MAm = N As (5)
’ Js

The wear load for the partition elements along the profile is

1
wi:§ZAmi: 1=1,2,...,n, (6)

where S is the total distance covered by the wheel. The unit of measure
of w; is mg/m. With the knowledge of the topology of the rallway line the
conditional wear-load distributions can be calculated for each straight and

" wij; J=0,1,2,...,m. (7)

curved section:

The resultant wear distribution is yielded in the form
m
Wi = wijlj. (8)
—

In formula (8) lo is the total length of the straight track sections and Ij;
j = 1,2,...,m are the total lengths of the curved ones of radii R;; j =
1,2,...,m. :

The decrement in radius of the i-th slice due to wear is

Ar; = Wi/p 2r r; Ay, 9)

where p stands for the material density of the wheel and r; is the initial
radius of the wheel for partition element Ay. The sequence of worn profile
radii are

w

L&}

=r;—Ar;; 1=12,...,n. (10)
Discretized profile alterations are carried out by 1500 km distances. The
errors caused by profile incompatibility should be balanced by smoothing.

Profile incompatibility can occur in certain altered wheel profile point(s)
if the local curvature yielded is greater than the maximum rail profile cur-
vature contacted.

The maximum rail profile curvatures contacted by the partition ele-
ments of the wheel profile are continuously computed.

For the wheel profile smoothing the following steps are required [7]:
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Construction of ‘circle arc chain’ (see Fig. 3).

Pushing the circle arc chain into the profile to be smoothed.
Mathematical smoothing by using Cj spline.

Checking of the curvature compatibility with the smoothed profile.
If necessary, repetition of the above points up to achieving compati-
bility.

N \
& n NS L /
L

I —

0<sk<gk, = 5mm
nzn, =27mm

m<m,  =35mm

ol G o) -
alg|s|®

q2q_ =6.5mm

Fig. 4. Permitted profile dimensions

Distance covered M, which belongs to the exhaustion of one of the
four conditions prescribed for permitted rail profiles (see Fig. 4) defines the
mileage performance of the wheel under examination [10], [11].

2.5. Numerical Optimization of Mileage Performance

The mileage performance M belongs to the fixed axle-box guidance stiffness
values taken into consideration. Define axle-box guidance stiffness vector
s = [sz,sy]T, and seek for the conditional maximum of function M(s) over
the permitted domain E of rectangle form (see Fig. 5). If the initial stiffness
vector is designated by sg, then — based on the gradient method-vector s;
can be computed by formula:

d M(s;—
s; = sj—1 + As gra (si-1) . (11)
lgrad M(si-1)|

3. Specification of the Railway Network

The railway network can be interpreted as a set of nodes (line junctions) and
lines interconnecting the nodes or radially leaving them as single branches.
A simple network consisting of only two nodes and three lines is shown
in Fig. 6.
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M(s)
(10°km) l Metro Vehicle

400
300
200

100

‘initial
stiffnesses

s, (kN/mm)

Fig. 5. Objective function M(s) and the maximization procedure over domain E

4. Approximate Description of the Operation Conditions by a
Semi-Markovian Stochastic Process

Let us denote the sequence of the states of the semi-Markovian process by
UL, UDy ooy Upy U]l - v - (12)

The sequence of random durations spent in the appropriate states is
T1yT2, s TnsTadtl -« - (13)

The state transition probabilities are defined by the following conditional
probabilities:

pij:P{{un+1=j}|{un=i}} s 4,5 =12,...,N, (14)

where N stands for the number of line sections in the railway network consid-
ered. The system of transition probabilities can be represented by defining
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TG00 R13S

U0 R 50
Line No.2

Total lenght: 36 km
v=280kmh

NG 104

2094

1000 R 3000

1000 R 76300 R 2D
300 R126 <38

355

18003 R75

FORIT0 300 RIATASTG -
WGR73 500 RS7
100 P54

500 RT8 1000 R36
E TO300RY0
Line No.3

Totat lenght: 40 km
v =70 km/h

Line No.1

Total lenght: 50 km
v =80 kmh

1002 R 55

30 REE 1000 R35 1000 R42

1000 R118

Fig. 6. Topology of the railway network (Example)

the N x N stochastic matrix II as follows

P11 P12 P13 -.- PIN
P21 P22 P23 --- P2N

M= | P31 P32 P33 --- P3N | (15)
PN1 PN2 PN3 --- PNN

For the systematic process description, also the ‘staying-in-state’ probabil-
ities should be dealt with. In case of semi-Markovian processes, a matrix-
valued function built up from the conditional probability distribution func-
tions Fj;(t) plays a decisive role [12]. Functions Fj;(t) are non-zero only
for those index pairs which also non-zero transition probabilities belong to.
Function Fj;(t) means the conditional probability that staying in the j-th
state is less than duration ¢, under the condition that the previous state was
the i-th one.

According to the aforesaid, the durations spent in the appropriate
states are characterized by the set of conditional probability distribution



ON STOCHASTIC SIMULATION... 29

functions:
Fyi(t) = P {{ras1 < }H{en = 3 Vunp =5}} 5 65 = 1,2,...,N. (16)

Using the convenient matrix formulation, the N x N matrix-valued condi-
tional distribution function F(z) is yielded:

Fll(t) Flz(t) F13(t) FlN(t)
Fy(t) Faot) Fe(t) ... Fn (t)

F(t) = F31(t) F3a(t) Fi3 t) ... Fsn (t) ] (17)
Fri(2) Fys (t) Fus t - Fyn(t)

The railway operation taking place on the network plotted in Fig. 6 is charac-
terized by semi-Markovian stochastic process {(t) describing the transitions
between the following five ‘states’

Operation on line 1 from A to the end of line and back,
Operation on line 2 from A to B,
Operation on line 2 from B to A,
Operation on line 3 from A to B,
Operation on line 3 from B to A.

Utk

The state transitions will be controlled by the transition probability matrix
IT = {pij}. The entries of matrix II should be determined by using the oper-
ation time table or traffic statistics. In our example the following transition
probability matrix was used:

0 0.5 0 05 O

0 0 09 0 01
Im=1,005 09 0 005 O . (18)

0 0 01 0 09

005 005 0 09 O

In accordance with the definition, entries in matrix II are conditional prob-
abilities, e.g. p;j stands for the conditional probability of occurring state 7
in the course of the state transition, under the condition that prior to the
transition the state was 1. :

In the following tractation, variable z > 0 means the number of run-
ning cycles along a ‘state-defining’ line in the network considered. As states
2,3,4,5 are defined by performing a single running cycle along line 2 and line
3, respectively, the characteristic number of cycles will be 1 for the states
mentioned, irrespective of the previous state 7. So functions Fj; can be
expressed by shifted unit jump functions U (Heaviside functions) as follows:

Fij(z) =U(z -1); 7=2,3,4,5. (19)
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If state 1 is realized, then function Fj;(z) should be defined as a piece-wise
linear distribution function over the positive axis with break points at the
positive integers. The actual variation of Fj;(z) can depend on the previous
state. In our example matrix-valued function F(z) takes the following form:

0 U(z — 1) 0 U(z — 1) 0
0 0 U(z - 1) 0 U(z — 1)
F(z) = | Fai(z) U(z -1) 0 Uz - 1) 0 . (20)
0 0 U(z - 1) 0 Uz — 1)
F5(z) Uz —1) 0 U(z — 1) 0

When simulating the number of cycles, uniformly distributed random num-
ber n is generated, and x;; is obtained by relationship

zij = F;'(n) . (21)

In Fig. 7 the operation process of a vehicle moving on the specified railway
network is visualized. On the horizontal axis the distance covered by the
vehicle is represented, while on the vertical axis positive integers 1, 2, 3, 4
and 5 identify the states of the embedded Markovian chain. These states
indicate the actual motion of the vehicle on the line sections, as they are
defined in specification (18). The total length in km belonging to operation

Distance covered (km) S

Fig. 7. Realization of the semi-Markovian stochastic process of the operation on
the specified railway network

in state 1 can uniquely be read off from the Figure, by determining the
total length of intervals fitting on level 1. The total length of operation in
the other states can be determined similarly, by reading off the summarized
length of the related intervals fitting on levels 2, 3, 4 and 5. In the Figure
due to the horizontal scale applied unfortunately the intervals belonging
to the latter states can hardly be recognised because of the considerable
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width of the vertical lines visualizing the actual state transitions between
the adjacent levels.

5. Simulation of the Wheel Profile Wear Stochastic Process

With the knowledge of matrices II and F(z) operation process realization
sections of 1500 km length can be simulated one after another, sequentially,
up to the exhaustion of at least one condition prescribed for the permitted
wheel profiles. The sequence of the altered wheel profiles can be determined
for the realization function in question, see Fig. 8. The alteration of the
wheel profile meridional curves in the course of the stochastic operation
conditions examined becomes a stochastic process, namely a two-parameter
stochastic field ((S,y).

Profile realizations for distance covered S = 24000 km are visualized in
Fig. 9 for the case of stochastic operational process determined by matrices
(19) and (21). Expected value and standard deviation of the profile realiza-
tions can be evaluated, and so can the one-dimensional marginal probability
density functions of the profile.

Fig. 8. Sequence of altered wheel profiles

6. Evaluation of the Stochastic Mileage Performance

In case of stochastic operational process also the mileage performance be-
comes a stochastic field defined on stiffness parameters s, and sy. Stochastic
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Fig. 9. Worn profile realizations after 24000 km distance covered in stochastic op-
eration

mileage performance p(s;,sy) can be defined as infimum of four random vari-
ables, namely of u1(se,sy), pu2(sz,sy), p3(sz,sy) and p4(sg,sy). The latter
are the distances covered up to the individual exhaustion of the permitted
profile dimensions in Fig. 4. According to the aforesaid

def .
H(szvsy) =e lnf {ﬂl(Szysy)aﬂZ(Sxasy)aﬂ3(3z7sy)aﬂ4(3zaSy)}

is a bivariate stochastic field. In a spatial co-ordinate frame, over the rect-
angle lying in the parameter plane the one-dimensional marginal probability
density functions are plotted on the basis of simulation results obtained for
the simple network shown in Fig. 6.

It is obvious to determine also the expectation and standard deviation
of u(sg,sy) as a function of s; and sy over the parameter domain, as it is
indicated in Fig. 10.

7. Possibility of Axle-Box Guidance Optimization

The objective function of the mileage performance optimization can be the
expected value function of the field p in the form:

M(s) = Eu(sz,sy) = max!. (22)

The numerical procedure can be again the gradient method described by
formula (11). As a supplementary objective, the requirement of low standard
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(ki) Rapid Train
Carriage

sy (kN/mm)

+3o0

F-30

s =[5:,5v]"
$¢ (kKN/mm)

Fig. 10. Expectation, standard deviation and marginal density functions of
stochastic field p(s)

deviation of mileage performance can be written as follows:
D(s) = Du(sz,sy) = min!. (23)

Objective functions (18) and (19) determine a region of the stiffness pa-
rameter plane in which in average high and relative homogeneous mileage
performances can be predicted.
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8. Concluding Remarks

On the basis of our theoretical investigations and numerical simulations, the
following conclusions can be drawn:

e The operation of the vehicle can be approximately described by using
the semi-Markovian stochastic model, based on the state transition
probability matrix and the matrix-valued function of the conditional
probability distribution functions of the durations spent on certain line
sections after specified state transitions,

e The description of wheel wear propagation by a two-parameter stochas-
tic field represents a new approach to the analysis,

e The stochastic field reflecting the mileage performance is introduced,
its expectation and standard deviation functions form the objective
functions of the traditional running-gear optimization, so the lateral
and longitudinal axle-guidance stiffnesses can be optimized by a nu-
merical procedure, also in case of stochastic operation on a specified
railway network,

o Further investigations are required to take into consideration also the
wheel wear caused by tread braking.

Authors are working on the prediction of rail wear propagation by means of
similar tools presented in this paper.
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Abstract

Authors analyse the effect of the wheelset gravity point eccentricity on the longitudinal dy-
namical processes of the vehicle by using a simple model describing the longitudinal motion
of the wheelset and the bogie-frame interconnected through a linear spring/damper sys-
tem. The torque driving the wheelset is given by a specified time function. The wheel/rail
contact is treated by the approximate pure rolling condition. By using perturbation tech-
niques, appoximate solutions of the equations of motion are determined.

Keywords: vehicle dynamics, simulation of operational loads, perturbation techniques.

1. Introduction

In case of railway vehicles certain gravity point eccentricity (GPE) always
appears with the wheels due to inaccuracies in the machining or irregular
wear on the running surfaces.

It is an important question in the design and operation of railway
vehicles, how great the allowed GPE can be. It is obvious that the presence
of non-zero GPE values implies the existence of rotating centrifugal forces
in the course of the rotatory motion of the wheels [2]. As the wheelsets
are elastically connected in horizontal direction with the bogie-frame of the
railway vehicle, it is clear that, due to the horizontal component of the
rotating centrifugal forces acting on the wheelset, under certain conditions
excited vibrations can be generated in the wheelset/bogie-frame two mass
system. The latter excited vibrations can cause unwanted excess loads in
the drive system, and the running behaviour of the vehicle can become
untolerable.

The actual problem which motivated the investigations described in
this paper was connected with the undesirable longitudinal vibrations expe-
rienced in the running gear of a metro trainset during the test period [3]. As
a possible source of the unwanted dynamic processes, the presence of certain
GPE values was suspected. In order to check the possible motions caused
by the excitation effect of the rotating centrifugal forces, a simple model was
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established, for which the strongly nonlinear problem could be treated by
some approximation methods developed in the theory of nonlinear ordinary
differential equations (see e.g. [1]).

2. The Model

In Fig. 1 the simple in-plane longitudinal dynamical model of the wheel-
set /bogie-frame system is shown. Mass m; represents the bogie undergo-
ing longitudinal translatory motion, while mo represents the mass of the
wheelset having a GPE value designated by e. The moment of inertia of
the wheelset is denoted by ©, while s and k stand for the stiffness and
damping coefficients of the connection, respectively. The longitudinal dis-
placements z1 and z2, as well as the velocities 2; and Z3 are also identified
in Fig. 1. The rolling radius of the wheel is R, while ¢ stands for the air
drag coefficient. The time dependent torque M, acting on the wheelset, is in
dynamical connection with the peripheral force F arising in the wheel-rail
contact. The rolling motion of the wheelset is considered as pure rolling,
i.e. creep dependent phenomena are omitted.

Fig. 1. The system model

3. Equation of Motion
The governing equations of the system have the form

S(.’L‘2 - 1:1) + k(i’Q — :i:l) - cz'% , (1)
mae T
magy = —s(za —21) — k(2 — 41) + R—ia&% cosE?—}-F, (2)

my 3
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where, in case of pure rolling in the wheel-rail contact, force F' can be
determined by the equation

022 - M- FR,
R

and M stands for the reduced turning moment.
Acceleration a of the longitudinal fundamental motion of the mass
gravity point can be obtained by the governing equation

M“@G/L% 2
_— — Cv

+ =
(m1 + ma)a 7

as
MR — cR%v?
(m1+ mao)R2+ 0O

where v is the speed of the fundamental motion.
Let us introduce the following notations:

S 2 S 2 2 2
wy = Wy = w” = wl] +w
1 ml’ 2 m2+(~)/R2’ 1 2
k k
Kl :=—, Kg:= —, K:!=K]+K2,
m] m2
ema R cR
€= ———— and ¢ := —.
moR% + O mi

Using the above defined new parameters, the governing equations take the
form

. . 2 .
 KyE — - 3
F1 — K1E — wie ! (3)
2
. ) 9 w & [wov € .9 z2
+ = {— — (=) + =i cos =, 4
T2 T Wyl <w1> a+R<w1>+R2COSR )

where = := z9 — z1 stands for the relative displacement.

4. Perturbation Equations

We are looking for the solution of the set of differential equations (3-4) in
the series form ‘

z; = ujo + eusl +0uzo + ..., =12,
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where functions u;j, j = 0,1,2,... are already independent of the dimen-
sionless quantities € and §. Relative displacement z can be written into the
form

T = ug + euy + dus + ...

Omitting the terms involving degree greater than 1, we obtain the following
six equations:

i — Kk1tp — wiug = 0, (5)
2 w\?
iigp + K2t + waup = (w——) a, (6)
1
i1 — K1ty —wiug = 0, (7)
1 u
w . 2 .9 20
U921 + Kouy + wiu; = —ujy cos ~— , 8
21 + Kot1 + wiuy 7120 R (8)
. . ) 1.
fi1s — K1ty — wiug = —EU%O , (9)
. ] 1 (wyv)?
ligg + Koty 4+ whug = = (*“) (10)
R \ wi
‘T‘u? 2
€ 1

Acceleration X, VS.time

- ! 1 [ ! ] i ] | ] ] I ] | 1
0 2 4 6 8 10 12 1% 1. 18 20 22 26 26 28 s30

o

T 20
E 15~ Velocity X,VS. time

10
5+ (Numerical solution of the non-linear system)

0 [HESN NN (N U NN SN IS I S S I
0O 2 4 6 8 10 12 1% 1% B 20 2 2% 2% 28s30

Fig. 2. Vibration form obtained by direct numerical solution

5. Exact Solution of the Perturbation Equations

If we subtract (5) from (6), (7) from (8), and (9) from (10), then we obtain
system

w 2
g + Kiug + wzuo = (—) a, (11)

w1
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Acceleration X, VS.time

| [ [ I | [ | i | [ | | | 1
0 2 4& 6 8 10 12 1% 6B 18 20 22 % 2 28s30

E 151 velocity %, VS. time

5+ (Solution with perturbation technique)
0 T SR Y I U NN T Y (U TR R B
0 2 4 6 8 M0 12 14 16 18 20 22 2 26 28s30

Fig. 8. Vibration form obtained by perturbational techniques

u1 + kuy + w2u1 = d%o cos % , (12)

. . 1. wyv')?

ug + Kug + wZUQ = — (u%o + (—) ) . (13)
R w1

System (11-13) would be a system in three variables, if we could determine
%19 and ugg with the help of functions u;, y = 0,1,2. But wu;g can be given
by (5), and a rearrangement of (6) yields

. < w )2 . 2
g0 = | — | a— katg — wiup .
w1
Hence uj9 and ugp can be determined with the knowledge of ug.

The solution of the perturbation equations can be given in the following
way.

Step 1. Let us solve equation

2
.. . 2 w
ug + Kug +wyg = (—) a
w1
by formula

At M
ug(t) = e t/2 (C1 cos — + C9 sin —2—> +

t
2
+ (i) %/a(r)e'c(t_r)/2 sin %(t —7)dT

w1

where A2 := 4w? — k2 > 0 in practical cases, and constants C; and Ch

can be determined by the prescribed conditions as €y} = 2(0) and Cy =
$(sz(0) + 24(0)).
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Step 2. Let us evaluate

1
10(t) = Kk1(uo(t) — z(0)) + w? /uO(T)dT + 1 (0)
0

by Eq. (5).
Step 3. Let us evaluate

w 2 f
ug0(t) = (w—l) (v(t) — vp) — /(muo(r) + wiug(r)dr + 32(0)
0

and )
unt) = () (o6 = )~

Wi

t 0
- //(ngdo(T) + w%uo(r) + w%uo('r))deG + £2(0)t + z2(0)
00

by Egq. (6), where s(t) is the longitudinal displacement of the fundamental

motion.
Step 4. Let us solve equation
2 2
. . 2 w s <w2v> € 9 u20 é .2
T+ KT +wr={— at+ — | — + —uU5q €cOS — + —uU
(w1> R \w RO R TR

for the relative displacement as
At At
z(t) = e rt/2 (Cl cos - + Cy sin —2—) +

6 fwo

o Fl/uN\2 2
+x0/ <(w—1) o)+ 7 () o

8 A
+—6—1220(7")2 cos WOR# + Ed10(7)2> T/ iy §(t - 7)dT .

R

6. Steady-state Solutions
If

Suppose that the acceleration a of the fundamental motion is constant

we are looking for a steady-state solution, then we can assume

u1p(t) = v(t) and wgo(t) = s(t) .
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This way we obtain equation

54k 4wl (w)2 + ) (wv)2+ev2 s (14)
I+ KT z=—) a+ ={— —— cos —
w1 R \w 'R R
with solution y \
t
z(t) = ;a?e_"t/z <cos 5 + isin ?> +

9 [ [/w\? § [ w)?
5/ ((a) ot (o) o

€ A
+§v(7‘)2 cos 5(1;—)) e T8/2 5in E(t - T)d7,
where v(7) = vg + ar and s(7) = voT + %72.
Let us reparametrize Egq. (14) by introducing displacement s as a new
variable:

2 2 2
s
v " + (kv + a)2’ +wlz = (o.%) a+ 7 (gj—) + f:‘Yl;—cos % , (15)

where ! stands for derivation by s, and v(s) = 1/v3 + 2as holds.

Let us suppose also that condition wjvy >> a is satisfied. Then we
are able to introduce another ‘small’ dimensionless parameter o := wxavo'
this case, omitting the terms of degree greater than 1 in «, ¢ and 4§, the first

perturbational approximation provides differential equation

2 5 2 € 2
voz” + rkvoz + wlz = OtL:lUO + R (%)lg) + 71;0—003 % . (16)

The corresponding steady-state solution at any speed v has the form

(s) a + Sv? N eRv? (s ¢) (17)
z(s) = —& cos | — — ,
F TR T W R 1 RrolE AR

where tan ¢ = -ﬁrg%f is satisfied.

7. Conclusions

Our solution provides a very good approximation of the nonlinear reso-
nance phenomena appearing due to the existence of a nonzero GPE value.
Comparing Figs. 2 and 3 one can see that the vibration forms obtained by
our perturbational approach have the same characteristics as the solution
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Fig. 4. Blown up section of the perturbational solution

achieved by the direct numerical solution to the equations of motion in case
of a metro-vehicle example. Approximate formula (17) possesses almost all
the important features of the vibration time functions shown in Fig. 4. In
the course of further investigations the system model will be generalized to
take into consideration the creep-dependence of the tangential force trans-
mitted on the wheel in the wheel-rail rolling contact [4].
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Abstract

This paper shows a comparison between the continuous and discrete rail models. The
discrete rail model consists of rigid bodies which are connected with each other by springs
and dampers. In the discrete track model the rails are connected with the sleepers by
springs and dampers, rhodelling the pads and fastenings. The continuous rail model is a
flexible beam connected with the sleeper masses in discrete points by springs and dampers.
The paper introduces a comparative analysis of the two models from the point of view of
the shape function of the rail models in case of a moving vertical force. The results give
a possibility to identify the parameters of the discrete rail model with the knowledge of
the dynamical processes of the continuous rail model.

Keywords: discrete rail model, continuous rail model, dynamical simulation.

1. Introduction

The investigation into the dynamical processes of the railway track — vehicle
system has a great importance recently. The structure of the railway track
can be modelled as a system of elastically supported continuous beam and
sleeper masses connected with the beam and the basic plane elastically and
dissipatively. There are moving vertical forces on the beam modelling the
vertical wheel loads of a railway vehicle. Due to the vertical forces also
vertical displacements of the beam and sleeper masses should be reckoned
with.

The goal of this paper is to analyse and compare the dynamical pro-
cesses of different railway track models.

The railway track is modelled on the one hand as a continuous beam
supported elastically in discrete points and as an elastic chain consisting of
discrete masses connected with each other elastically and connected with the
sleepers in discrete points, on the other. A longitudinally moving vertical
force acts on the rail models. The solutions of the equations of motion of
the two dynamical track models can be compared from that point of view, if
a the good approximation property of the results yielded by the discretized
model is ensured.
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Fig. 1. Continuous rail model

Fig. 2. Discretized rail model

2. Track Modelling

The continuous rail model of the railway track is shown in Fig. 1. The in-
plane dynamical model consists of an elastic beam supported elastically in
discrete points and the model of the sleeper masses is connected with the
beam and the stationary basic plane by parallelly connected springs and
dampers modelling the rail pads and the ballast. The parameters of the
beam are: moment of inertia I, Young modulus E, density p and cross-
section area A in the model. s, is the stiffness of the spring, k, is the
damping between the beam and the sleeper mass, while s, stands for the
stiffness and kj for the damping of the ballast between the sleeper mass
and the stationary basic plane. The effect of the wheelset is represented by
vertical force F, moving at a constant longitudinal velocity v.

The second model of the railway track is shown in Fig. 2. The dis-
cretized model of the rail consists of brick-form masses connected with each
other by vertical and bending springs (sp) and vertical and bending dampers
(kp). The length of one mass element is designated by I. Moving vertical
force F' acts on the discrete track model representing the wheelset load of
the vehicle.
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3. Motion Equations

a. The equations of motion of the continuous rail model are determined
by the known.equation of the Euler-Bernoulli beam and by using Newton’s
2nd law for the motion of the sleeper masses of the model.

Thus, the equation of motion for the beam is a fourth order linear
partial differential equation

o 2(z,t) 3%z(z, 1) _ [ 0z(z,1) , _
Pt e 2k (F5 -0 te = 20~

- Z si(z(z,t) — 2pi(t))0(z — x;) + F(t)é(x — vt), 1)

where z(z,t) is the vertical displacement of the beam and z; is the sequence
of the longitudinal position of the sleepers [1], [2], [3].

The equation of motion of the ith sleeper mass is the following second
order ordinary linear differential equation:

mip = si(z(xi,t) — 2pi(t)) + ki(ze (24, t) — 2pi(t)) - (2)

Fgs. (1) and (2) determine an equation system consisting of one fourth
order linear partial differential equation and number n second order linear

ordinary differential equations.
b. The equation of motion for the discretized track model (shown in

Fig. 2) can be written into the following form:
Mz + Kz + Sz = (1), (3)

where M is the mass, K is the damping and S is the stiffness matrix,
z(t) is the vertical displacement and angular position vector and b(t) is the
excitation vector. Vector b(t) can be written in the following form:

Foag@EW eyl
bi(t) = (G=12,...,20n - 1) , (4)
0 otherwise

Fl(1 — 1)l +0.5] — vt} if
b;(t) = (1 =24,...,2n),

0 otherwise

The excitation function can be seen in the Fig. 3.
The structure of the stiffness matrix can be seen in the Table 1.
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Fig. 3. Excitation function

4. Solution to the Equations of Motion

Equation system (1)-(2) can be solved by using Laplace-transform method.
Define

Z(p,t) = L{z(=,8)} , (6)
© the Laplace—transform of function of z(z,t) with respect to variable z.

The Laplace-transform of (1) can be written into the following form
by considering F(t) is constant:

(IEp* + pAv?p? — Zkivpe_pz" + Zsie_pz")Z(p,t) =
(i) (2)

= Fe P 13 (ki Zyyi(p,t) + 5iZpi(p, t)) e P50 . (7)
(@)
So the characteristic polynom of Eq. (7) is the following transcendent equa-

tion:

f(p) = IBp* + pAv*p® = ) kivpe P% + 3 sie P =0, (8)
(@) (@)
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Table 2. Data set of computation

T = 1.7415-10°m? | s, = 3-10°N/m
E = 21-10"N/m? |s;, = 0

pA = 60kg/m E =0

m, = 6kg k, = 0

my = 250kg ky = 0_

s = 5-10"N/m v = 100 km/h
s, = 3-10)N/m F = 1N

where the unknown variable is p. The Eq. (8) can be solved graphically or
numerically. The solution to (1) and (2) can be written into the following

form:
2(a,1) = Y Clpy)el &7, (9)
(9
where C is the function of p;, j is the index of the solution of Eg. (8), i is the
index of the serial number of the support. The solution was approximated
by substituting

Zsie_pz" =4 Zsie—pm" =s and Zkivpe_pmi = Kop, (10)
O] (4) (@)
where s' and k' are constants [1], and let zp;(z,1) = 0 and z,(z,t) = 0 (the
vertical motion and velocity of the ballast is approximately zero).

The differential equation system of the discrete rail model can be warit-
ten into the following form by using the state space representation [2], [3],

[4]:
£(t) -M~! K -M~! s 2(t) b(t)

[z(t)}:[ E 0 ]L(t)b[@]' (11)
Set of Egs. (10) can be solved in the time domain by using numerical method
(e.g. Euler’s method).

The computations were performed by using realistic data set for a 3 m
long track section model shown in the Table 2.

The solutions obtained by the numerical computations are shown in
Fig. 4. There are two curves in the Figure. The solid line represents the
momentary deflection function of the continuous rail model. The strip of
rectangles represents the momentary shape of the discretized rail. Each
rectangle describes the displacement of the gravity point of the discrete
brick element in the discretized model. The moving force for the instant of
the representation is at position ¢ = 1 m. In the Figure, the longitudinal
distance z is taken on the horizontal axis.
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0.0 o6 12 1.8 T T2l T30
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Fig. 4. Shape-function of 3 m long continuous and discrete rail model in case of
moving load

It can be seen in the Figure, that the displacement function of the
continuous rail model has a smooth shape with small curvature (two inflec-
tion points), while the discretized model has more changeable curvatures
and more than two inflection points (the initial values were based on by the
condition that the maximal vertical displacements of the two models should
be equal).

5. Conclusions

It can be seen that the shapes of the displacement functions belonging to
the two models are similar to each other but the degree of fitting is not
satisfactory between them. Comparing the two computation methods, it is
to be emphasized that the treatment of the continuous rail model is com-
plicated because of the necessity of the solution of nonlinear Fq. (7), which
can be solved only approximately.

The mathematical treatment of the discretized rail model is much more
easy.

Further research is necessary to determine the optimum parameters of
the discretization and the number of the elements used for representing a
sleeper section of the rail.
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Abstract

A detailed nonlinear model of the four-axle real vehicle, considering both vertical and lat-
eral vibrations has been proposed. Inertial and elastic-viscous properties of the track have
been taken into account. Comparison of the theoretical investigations and on-track tests
has confirmed the rather good authenticity of the model. The calculations for anoma-
lies either in track or in vehicle parameters as well as for their combinations have been

performed.

1. Introduction

Despite safety measures, strictly observed on railways, the cases of derail-
ment take place sometimes. These cases are becoming more frequent with
increasing of operational speeds, axle loads, train length and mass. Thus,
the necessity of detailed modelling of such accidents arises in order to de-
termine the causes of them and, that is most important, to prevent the
recurrence of such situations in future.

Such an analysis becomes possible on condition that the reliable infor-
mation about the track and the vehicle is available and that the analytical
model detailed sufficiently of the vehicle-track system, allowing to use this
information, exists.

The analytical model of the four-axle freight wagon, the software pack-
age, designed on the base of this model and some results, obtained with their
help, are described in this paper.

2. Freight Wagon Vertical and Lateral Dynamics Model

The four-axle open goods wagon was chosen by the authors as an object
for modelling. Such a choice has made it possible to investigate a lot of
various types of freight rolling stock, operated on the Ukrainian railways.
The model of the wagon is shown in Fig. 1.
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Fig. 1. Four-axle freight wagon model 4

A brief description of the model is given below (more details one can
find in [1]).

The investigated system consists of eleven solid bodies (a car body,
two bolsters, four side frames, four wheelsets). If necessary, it is possible to
take into account car body flexibility. The following specific features of the
vehicle have been reflected in the model as well.

Car body - bolster. One neglects with a clearance between the pivot and
the centerplane, thus the mutual longitudinal displacements of these bodies
are absent and their pitching is identical. As regards rolling and yawing of
the bolster — they may occur independently from rolling and yawing of the
car body. The action of the slippers of various types can be modelled.

Bolster — side frame. Vertical, lateral and longitudinal springs allow
all possible mutual linear displacements and mutual yawing, In addition to
springs, dry friction dampers with asymmetric characteristic are installed in
this unit.

Side frame - wheelset. All possible mutual displacements between
these bodies are allowable. Installation of the rubber spacers can be simu-
lated by adding the Coulomb friction elements.

Thus, the following non-linearities are modelled: rolling and pitching
of the car body on the pivot, kicks after taking up the clearances in the
slippers, geometric and physical non-linearities in the wheel-rail contact
points (the creepage forces are modelled by the CARTER’s theory [2]).

The VLASOV’s hypothesis [3] is accepted for the description of elastic-
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viscous and inertial properties of the track in vertical and lateral directions.

After taking into account all the above-mentioned features and re-
straints one obtains a 59-degree-of-freedom model. The corresponding or-
dinary differential equations system has been composed. The Runge-Kutta
(for the first steps) and Adams-Bashforth methods are used for its solving.

The nominal values for some parameters of the standard freight open
goods wagon without anomalies are listed in Table I. They have been taken
from [4] and [5].

3. A Brief Description of the Software Package

The described model has become the base for the program package for
IBM PC computers with MS DOS. The computational part has been written
in FORTRAN and the interface modules have been written in C language.
The package provides a user-friendly interface, allowing to change the input
parameters in easy way. The output of the program contains values for more
than one hundred dynamic characteristics.

In addition some other, stand-alone programs have been created. They
allow:

o to generate the file with the track irregularities, necessary for the main

program in different ways;
e to draw plots of the computed displacements, accelerations and forces;
¢ to compute the power spectrum densities of the various processes;
o to determine the increment of the rolling radius depending on mutual
lateral wheel-rail displacement for various real profiles of the wheel

and rail.
The authors would like to thank Mr. R. Granovsky and Mr. A. Rei-

demeister for their help in creation of these programs.

4. Modelling of the Track Irregularities

Four types of the track irregularities are used as an input for the simulation
program, described in Section 3. Those are:

s deviation of the left rail from a uniform profile in a vertical plane;

e deviation of the right rail from a uniform profile in a vertical plane;

o deviation of the left rail from a straight line in a horizontal plane;
e deviation of the right rail from a straight line in a horizontal plane;

For some reason such a set of irregularities was chosen as more convenient
in comparison with a traditional vertical profile — cross level — alignment -

gage set.
The file with necessary track irregularities may be created with the
separate program in several different ways, namely:
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Table 1.
Data for the standard wagon

Mass of the car body

Rolling moment of inertia for the car body
Pitching moment of inertia for the car body
Yawing moment of inertia for the car body
Bogie centre distance

Mass of the bolster

Rolling moment of inertia for the bolster
Pitching moment of inertia for the bolster
Yawing moment of inertid for the bolster
Vertical stiffness of the secondary suspension
springs

Shearing stiffness along the lateral axis between
the bolster and the side frame

Torsional stiffness between the bolster and the
side frame

Clearance in the slippers

Mass of the side frame

Pitching moment of inertia for the side frame
Yawing moment of inertia for the side frame
Bogie wheelbase

Mass of the wheelset

Rolling and yawing moment of inertia for the wheelset
Nominal wheel radius

Distance between planes of rolling radii
Flange clearance

Reduced vertical track stiffness

Reduced horizontal track stiffness

Reduced vertical track mass

Reduced horizontal track mass

76500 kg
7.5E4 kg-m2
1.05E6 kg-m?
1.1E6 kg-m?
8.66 m

450 kg

300 kg-m?
50 kgom2
300 kg-m?
4000 kN /m

6000 kN/m
200 kN m/rad

0.005 m

680 kg

220 kg-m?
220 kg~rn2
1.85 m

1370 kg
1000 kg-m?
0.45 m
1.580 m
0.007 m
43830 kN/m
16570 kN/m
659 kg

76 kg
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Fig. 2. Measured rail profiles

o after processing the data, recorded with a track-test car (an example of
the vertical irregularities, obtained in such a way, is shown in Fig. 2);

e by inverse Fourier transform of the vertical profile, cross level, align-
ment and gage power spectral densities and subsequent change-over to
the chosen type of irregularities (the authors use well-known expres-
sions for the PSDs from [6]);

e by modelling the track with the periodically repeating joints;

e by modelling the isolated track geometry variations like bump, jog,
plateau, etc.

5. Validation of the Model

The track irregularities shown in Fig. 2 were recorded during the on-track
tests simultaneously with some wagon’s performance (vertical and lateral
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accelerations of the axle boxes and car body). The measurements were car-
ried out with various speeds both on jointed and on continuously welded
track. Thus, the authors got an opportunity to compare the results, ob-
tained by computer simulation, with the corresponding experimental data.
For the vertical dynamics performance good coincidence was received. As
to horizontal accelerations of the car body, the situation proved to be not so
optimistic. The amplitudes of the theoretical accelerations coincide closely
with the test ones. As to power spectrum densities of both processes, the
coincidence in the low frequencies interval (0.5-3 Hz) is good enough but
for higher frequencies (3-10 Hz) the difference occurred. The authors prone
to see the origins of this in rather rough modelling of a dry friction in the
system.

6. Criterion of Safety and Estimation of the Dynamic
Performance

The so-called coefficient of stability of a wheelset during flanging (for brief-
ness we shall refer to it simply as to the ‘coefficient of stability’) is used as
a criterion of safety on the railways of the former USSR according to [7].
This coefficient is determined by the following expression:

c |P1Cy — P,Cy — C3|
S = s
|Hp|

(1)

C; — coefficient of stability;

P, - left-axle-box-to-side-frame vertical force;

right-axle-box-to-side-frame vertical force;

Hp — frame force (the sum of left and right axle-boxes-to-side-frames lateral

forces).

P
|

The coefficients Cq,Ca,C3 depend upon the mass and geometric characteris-
tics of the vehicle [8]. The motion of the wheelset is assumed to be unstable
when the coefficient of stability is less than 1.

The program determines the minimum values of the coefficient of sta-
bility for all four wheelsets together with distances where those values were
registered. The total length (in meters and seconds) of the longest continu-
ous series for Cy < 1 also is printed for each wheelset.

Besides the coefficients of stability the program analyses more than a
hundred dynamic characteristics of the wagon. For each of them its min-
imum and maximum values, the distances, where these values were regis-
tered, arithmetic mean, dispersion, mean square and confidence limit are
determined. The Fig. 8 illustrates the above-mentioned statistics for some
dynamic performance (frame forces (Hb) and coefficients of stability (CS)
values for all four wheelsets as well as car body roll angle (THETA)).
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Wagon: empty
Speed:  75.0 km/h
Track: Straight
Fain Xmin Faax  Xmax M D ) M +2.55

Hb(1,1) -17.06 80.29 13.22 86.71 -.3517E-01 .10.22 3.196 8.026
Hb(1,2) -14.93 80.21 10.74 86.61 -4579E-01 11.90 3.450 8.671
Hb(2,1) -7.963 68.45 7.769 62.76  .4284E-01 2.110 1.453 3.674
Hb(2,2) -8.088 69.10 8.232 63.02 .4936E-01 3.044 1.745 4.411

THETA -8.191 89.99 7.060 84.80 -.4488E-01 19.26 4.388 11.02
Coefficients of stability

CSmin  Xmin Longest continuous series < 1
1,1 3.086 73.56 from .000 m to .000 m (.00000 sec)
1,2 3.254 71.35 from .000 m to .000 m (.00000 sec)
2,1 3720 70.30 from .000 m to .000 m (.00000 sec)
( )

2,2 4770 71.41 from .000 m to .000 m (.00000 sec

Fig. 8. Fragment of the program’s output

7. Anomalies Modelling

The vast number of the model input parameters makes it possible to simulate
various anomalies in the track and in the vehicle. Typical anomalies in the
track could be modelled with the help of the program, described in section 4.
Among the most important anomalies of the vehicle which are possible to
imitate one should mention the following ones:

e nonstandard wheel-rail profiles, appeared because of wear or improper
machining;
o wear of the different vehicle suspension elements;

¢ displacement of the car body centre of gravity both in longitudinal
and in lateral directions due to inaccurate loading of the vehicle.

8. Some Results

The material of current section has been obtained as a result of analysis of
the derailment accident which occurred in reality. The empty tank wagon
derailed at the speed of 75 km/h. Careful analysis has revealed some severe
anomalies both in the rolling stock (mainly in the wheel profiles that is
shown in Fig. 4 in comparison with a standard profile) and in the track
(deflections in alignment and cross-level).
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Fig. 4. Standard wheel profile (solid line) and the example of the worn profile
(dashed line)

Then numerous calculations were carried out in order to clarify the
circumstances of the accident. They were performed for four following com-
binations of anomalies:

e ‘nominal case’, i.e. the standard wheel profile and the ‘good’ track
(the real track with average deflections was chosen as a ‘good’ one);

e the wheel profile from the derailed tank wagon and the ‘good’ track;
o the standard wheel profile and the track from the accident;

e combination of anomalies in the wheel profile and the track.

The influence of speed on the coefficient of stability for the first wheelset is
shown in Fig. 5. The dependence of the maximum car body roll angle on
the vehicle speed also was studied. The correspondent plots are shown in
Fig. 6.

While analysing these plots one can draw a conclusion that the non-
standard profile has decreased the dynamic performance of the wagon in
comparison with the ‘nominal case’, and the qualitative behaviour of the
‘parameter value vs speed’ line has remained almost the same. The par-
ticular track geometry has caused the sufficient changes in this behaviour:
the speed interval of 65 to 80 km/h has become a critical one, the most
dangerous interval is 70 to 75 km/h. The combination of the anomalies has
resulted in decrease of the stability coefficient much below the safe level.
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Fig. 5. Effect of speed on the coefficient of stability
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Fig. 6. Effect of speed on car body maximum roll angle
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9. Conclusions

The created software package allows to simulate the behaviour of the four-
axle freight wagon while travelling over the straight or curved track and to
analyse therefore its dynamic performance. Existing of deflections from a
nominal value in the parameters of the vehicle or track causes the deterio-
ration of the performance as a rule. Thus, it becomes possible to determine
the anomalies limits exceeding of which may cause a railway accident.

(1]
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Abstract

The stochastic simulation of random road surfaces as well as of parallel tracks is considered.
Starting from the spectral density

2

-9 T,
S(a)_772+a2a >0,

a fast simulation method is derived and demonstrated for the surfaces as well as their
derivatives. Thereby the theory of weakly correlated functions supplies the theoretical
background.

Keywords: stochastic simulation, random road surfaces, weakly correlated functions.

1. Introduction

Considering the influence of roads on the behaviour of vehicles the math-
ematical modelling results in differential equation systems containing the
road surfaces and their derivatives as random excitations. In this paper
we are concerned with a new simulation procedure of road surfaces. In the
literature several principles and methods can be found for simulation and ap-
plication in vehicle dynamics (cf. for instance [7], [8] [9]). We are especially
interested in a more general method supplying a fast (on-line-) simulation
procedure as well as the basis for a theoretical stochastic analysis.

Using the concept of weakly correlated functions VOM SCHEIDT and
WOHRL derived some approximate models of random road profiles (see [10]-
[14]). In section 2 the main results of these approximations are summarized
and analyzed for our purposes. Thereby we will see that these models are
also suitable to get two correlated parallel tracks.

Subsequently in section 3 our simulation procedure is derived on the
basis of the simulation of sufficiently smooth weakly correlated processes.
Finally in section 4 some numerical results are given to show the useful-
ness and efficiency of the simulated realizations. Applications of this new
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simulation to vehicle dynamics can be found in [3], [5] and [11]. A closed
presentation of the simulation methods described in this paper, a compari-
son with theoretical results and also more concrete applications are included

in [11].
2. Mathematical Models and Statistical Adaptation

Starting from the often used spectral density of road profiles f
2

g 2
S = ——F, 0, 1
@ =" > 1)
with the corresponding correlation function
R(t) = o2 (2)

an approximation of f is derived in WOHRL [14] and vOM SCHEIDT; WOHRL
[12] in form of a linear functional

t

ftw) = [ D s w)ds 3)

—00

where fe(s,w) is a wide-sense stationary and weakly correlated process.
Weakly correlated processes are random functions without ‘distant effect’ or
functions of ‘noise-natured character’. The exact definition and the resulting
limit theorems or expansions of stochastic characteristics are given in [10].
Especially, their expectation function is zero, the correlation function of such
processes has the form

R.(sy,s2) for [s1 —s2| <€

(fe(s1)fe(s2)) = { 0 otherwise

and the so-called intensity is in case of wide sense stationary processes de-

fined by

£

o1
a= 151?6 - Re(z)dz . 4)
—
Then the following limit theorem
1 a
lim —(f(¢ to)) = — e tz—t]
iy ~{f (1) (t2)) = e

results in the approximation for small values of the correlation length ¢ > 0

(F(t1)f(t2)) ~ %e‘”‘”‘“' : (5)
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which corresponds to the desired correlation function (2).

Whereas the original correlation function (2) is not differentiable, the
approximation (3) is twice differentiable if f. is continuously differentiable
for € > 0. It follows

t
fthw) = feltyw) -~ / eI £ (5, 0)ds |

1

f'(t,w) = fs(t,w) - vfe(t,w) + 72 / e"y(t_s)fe(s,w)ds .

-0

Because of the appearance of these explicit derivatives fs and fs VOM
SCHEIDT [10] introduced a smoothing function (polynomial) Qg(t,4) de-
pending on the parameter § > 0 and having the properties Qg(0,d) =
Q5(0,8) = 0. Putting

i

ft,w) = / Qt — 5,8) fe(s,w)ds

—0o0

where Q(t — s,8) = Qo(t — 3,5)6_7(t_s), the approximation corresponding
to the correlation function (3)

ag

(f(t1)f(t2)) = ge“‘7|752—tll

is true if § | 0. Here we have only linear functionals of f.

t

FE (¢ w) = /Q(k)(t — ) fe(s,w)ds, k=0,1,2

—x

as derivatives. This second model is especially advantageous for the theo-
retical stochastic analysis of random vibration systems (cf. for instance [10],
[11] and [13]). In our former papers (cf. [1], [2]) we also used this model.
But, it needs some special efforts with respect to the numerical calculations
because of the structure of the smoothing function Q. Therefore, we use
now the first model (3) to derive a quicker simulation procedure. To this end
we need in (6) also simulations of differentiable weakly correlated processes.
In section 3 the resulting procedure is given.

After modelling the random road profile as linear functional (3) and
subsequently its derivatives by (6) the next problem is to specify the model
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parameters v, € and a by comparisons with statistical estimates from mea-
surements of real roads. This can be carried out by means of an interactive
procedure. Firstly, the scale parameter v is adapted by consideration of the
correlation function R(t) (see Fig. I).

Secondly, the correlation length ¢ is determined by calculating the
theoretical spectral densities of the 1% and 274 derivative

2
. _ gy
4
cola) = (a2 — ~2 a7
Sff(a) - (C\f - )stfs(a) + o 72 + az

and comparing them with the estimates of the measured road. The final
result is plotted in Fig. 2.

fE(x’w)

).

Fig. 8. Realization of a differentiable weakly correlated process

After all, the intensity is calculated from relations (2) and (5) by a =
25‘2’7/6, where 62 denotes the estimated dispersion of the measured road.

The mathematical models can be extended to considerations of two
parallel tracks using methods described e.g. in PARKHILOVSKII [6] and
ScHIEHLEN [8]. Taking into account the concepts mentioned above two
correlated excitations (tracks) fp(¢,w) and fr(t,w) with distance b and an
orthotrop behaviour, i.e.

Ry, 1ot ta) = (FL(t1)fR(ts)) = o2e 7UblHI =0

can be derived. They have again the form of linear functionals

t
fL(t7w) = / 6_7(t—s) [fle(svw) + f2€(svw)]d5 )
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t

frlt,w) = /e*“/(t-”[fle(s,w) — foe(s,w)]ds

—00

with independent weakly correlated processes fie(s,w) and foc(s,w). The
derivation and some further considerations with respect to the coherence
function can be found in [2] and [11].

3. Simulation Procedure

Now we turn to the simulation of the mathematical models (3) and (6). First
of all, the simulation of a differentiable weakly correlated process fe(s,w)
is given. Thereby, a bounded domain s € [a, 3] of interest is decomposed
into n intervals [a;,a;+1] with length A = (8 — @)/n and a; = a + th,
i =0,1,...,n PFurther {{(w)}; and {€;,(w)}i, s = 0,1,...,n, denote two
sets of independent, identically distributed random variables with < & >=
<§¢;>=0and < {22 >= ag for all i.

o Mo )

1 s A

0.1

,_d_
| B Ry woe?
<
{
o~
=

Fig. 4. Simulation of two tracks
Setting

fe(s,w) = gi(s,w) (7)
= pi(s — ai)* + qils — @)® + uils — @) + v;

for s € [ai,a;+1) and demanding

gi(ai) = &,  gilaiq) = &y,
gilai) = ¢&;, giaiv1) = &
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the coefficients in (7) are determined by

2& — &ip) + (§ + E)R

C 36 — &) + (26 + iy
g = 2 :
u; = Z, and wv; =& .

In consequence of the independence of the random variables £; and Ei the so
defined process f. is weakly correlated with correlation length ¢ = 2h. Its
intensity can be determined by a = 062/2’ i.e. the intensity depends only on
the stochastic behaviour of £. Hence, a simulation of a differentiable weakly
correlated process can be obtained by simulation of the random variables §;
and ¢;. In Fig. 8 a realization of such a simulation is drawn with ¢ = 0.1.

Now we consider the simulation of the approximation of f, f and f
according to (3) and (6). To this end, we need the determination of the
integral or linear functional, respectively. Firstly, we separate this integral

03
f(t,w):/e7tsf€swds+/ tsfssw)ds,
0 ) o

where « has to be chosen such that the first integral is neglectably small.
There are possibilities to support this choice by some mathematical esti-
mates. Secondly, the integral over [a,t] is determined by

ni—1 ai41

1 i
/ = g (syw)ds = / e V) gi(s)ds + / eV g (s)ds

=0 a;
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with n; = entier [({ — a)/h]. Some straightforward calculations lead to

t .
fmmz/fWﬂk@m@=

B. FELLENBERG and S. SCHERF

nt-l

i=0

$ om0 4 e =00
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where
b h® 3n? L6 _6) . h? 2k NE:
6 = e lp (o AL I U
' B A \v
h 1 1 6p;  2¢; Uu; v;
+u-<~————>+v-—]+ [———+————
"\v 4 "y P S L

and ¢y, (t) corresponds to ¢; if h is substituted by t — ay,.

4. Numerical Simulation

Finally we present some concrete simulation results. According to a realized
adaptation the values v = 1.2, ¢ = 0.021 and a = 0.222 are chosen. To
demonstrate two parallel tracks the distance b is put b = 0.0675 s which
corresponds to 1.5 m (v = 80 km/h). In the Fig. 4 the simulated profiles
fr(t) and fgr(t) are drawn and in Fig. 5 the measured profile f(¢) is drawn
for a visual comparison.

A good coincidence can also be stated investigating the characteristics
of the simulated profile. In Fig 6 the estimated correlation function and
spectral densities of the simulated profiles are drawn in comparison with
the adapted characteristics.
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Abstract

This paper treats a) the s.c. ‘capacity’ and ‘alternate’ fractal dimensions (fr.dim.),

b) together with numerous illustrating examples of geometry, nature and modern arts,
c) basin boundaries being often fr.dim, d) finally recent ‘control algorithms’ for reducing
chaotic motions into periodic ones.

Keywords: capacity, pointwise, correlation, information, Ljapunov fr.dim.; fr.basin bound-
aries, control algorithms.

1. Preliminary Remarks

1.1 Since approx. 3 centuries, the study of a dynamical system (dS) given
by the differential equation (DE), mainly linear (lin.} ones and initial date

m:c:f(x,z,t), Il?(t()):.'t(), i(to):vo

had performed the classical task: to predict the motion (as ‘history’) of S far
into the future, using some counting device. In our century, the (electric,
later electronic) computers had brought greater possibilities for such far
prediction.

However, in the last 1-2 decades, certain exact sciences (e.g. fluid, then
solid mechanics, later electric, electronic, physical-mathematical-technical
etc. branches, too) had discovered special, s.c. chaotic motions (Ch-m)
in non-linear (nlin.) dS, which cannot be predicted generally into the far
future and exiges also new concepts, ideas, theories and methods. It became
obvious till now, that @) the Ch-m can appear in all nlin.dS, 3) it opened a
new age in the dynamics and ) brought a type of revolution into the exact
sciences [2], [6].

1.2 Be characterized shortly the class of Ch-m in (deterministic) nlin.dS!
— a) The motion of nlin.dS «) - e.g. over a value 4§ of control parameter (e.g.
the frictional one § = ¢/w) - can be regular (vibration with period 7', tendig

at t — oo e.g. to a stable limit cycle (LC) G7(Bg); then 8) — under the values
of a certain sequence d; > d2 > ...d, > doo — the sequential bifurcations
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g—)gz—)gj—>gq(1 1 =12 =1+2,.. 2"_2+2)andstable
period-duplications Gr = Gor — GzzT — Gonr happen finally +) — under
a heaping value §o, > § — the asymptotic motion on the LC GonT becomes
an irregular (aperiodical), s.c. chaotic one; its trajectories are contracted to
a funny (strange) attractor, on which the points jump irregularly; consequ.
the prediction of this Ch-m appears totally impossible (practically, already
for n > N). (This is the very frequent FEINGENBAUM way toward the Ch.,
but also other ways exist, too (see in [3]). In other words, the approaching
way a)-0) can be qualified as a deterministic input of Ch-m (without random
or unpredictable inputs and parameters), over §; with T periodic, then under
81 > ... > 6, with 2T,...,2"T periodic vibration, which transits on the
final way <) under dy, into a stochastic output of Ch-m, under o, with an
aperiodic, irregular jumping on a funny attractor. [Obviously, the Ch-m is
not a random motion (as e.g. the BROWNIAN one) with only statistically
measured parameters and truly without input data]. — b) A Ch-m is very
sensitive to the initial conditions (IC), that is small differences in the IC
can produce very great (emormous) divergencies in the final phenomena. -
‘c) It bears a loss of information about IC, when the uncertainty dAg = dzo
at time #g = 0 (in regular S) grows during t exponentially to dA; = dAgeht
(in ch.S). — d) Its consequence h = 1 In 5{’3‘ is related (through the entropy)
to the s.c. LIAPUNOV ezponent (see in [2], [3]) measuring the divergency
of trajectories in the phase plane (z,2,t). — €) Searching for the geometry
of the (irregular become, s.c.) Ch-m, the s.c. ‘strange attractor’ (Str-att)
appears, as unusual (maze-like, multisheeted) structure in the phase space.
- f) It is often measured by fractal dimension (fr.dim.). — g) A cross section
of Str-att produced by the s.c. POINCARE map (Pc-map) a thread-like set
of points shows also fr. properties. — h) The transition between basin of ch.
and periodic motions in 1IC or parameter space is often qualified as fr. basin
boundary.

1.3 Such and other properties of Ch-m were treated in detail in our pa-
pers [6]-[7] and mainly in our series of papers [3] (recommended also for
postgraduate students and doctorands, too), therefore it is unnecessary to
repeat them now. Obviously, it will be here sufficient to recall shortly the
basic facts, notions, methods, etc., which are in a relation near enough with
the fractal lines, dimensions, basin boundaries, etc. So they can help to fit
— in this long ‘fr. chapter’ — into the mentioned series, (which has given till
now only short information about the HAUSDORFF’s definition).

2. Definition of the ‘Capacity’ as Fractal Dimension (Fr.Dim.)
2.1 A very intuitive (geometric) measure for the dimension of a set of points

has been introduced by HAUSDORFF (7/4, [3], [6]). This is a general defi-
nition, which can furnish - occasionally — a fr. number, as the dimension
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of the examined set, so it is suitable to classify the POINCARE map of nu-
merous nlin. systems giving quantitative measure for the fr. properties of
their Str-att. — We describe now the HAUSDORFF’s definition of the s.c.
‘capacity’, but later we will mention some other definition given e.g. by
MANDELBROT, FARMER, etc.

2.2 Let us observe now a set Sy of points in the (integer) n-dimensional space
S™ (D S4), e.g. auniform distribution of Ny points a) along some d = 1 dim.
(plane or space) curve G in the space 53, or b) No uniformly distributed
points on some d = 2 dim. surface Fy C $3. Then we try to cover this set
of points with small n (= 3) dim. cubes of side ¢ > 0 (or spheres of radius
¢ > 0), namely using such covering cubes in minimal number N(¢) < Np.
If Ny is large enough, then N(e) will scale for d = 1,2 and for arbitrary d
(< n) dim. — intuitively and approximately — as

N() =~ 1/, (1)
N(e) =~ 1/e?, (2)
N() ~ 1/ =@1/e)? (e,d > 0). (3)

There is expected a limit behaviour
N(e) ~ (1/e)? = 400 at & — +0, (4)

namely faster at larger d > 0 (connected with the information on G;, Fy and
Sq’s spatial placing, at increased accuracy for ¢ — +0). The Egs. (3)!-(4)
show a natural way to the approaching value d got explicitly by logarithm
of both sides:
In N(e) = d-In(1/¢) , (5)
d=InN(e)/In(1l/e) , (6)

then to the exact value d, (referring with a subscript to the name ‘capacity’)
defined by the limit formula:

In N(¢)

= lim, n(1/0) with implicit requirement Ng > N(e) = +oo . (7)

)

It gives in simple cases the usual integer dim. d (= 1,2,3,...) (see the
examples la—1c); but it furnishes in numerous chaotic cases non-integer =
fraction result, sc. fractal dim. (see the examples 2-3).

2.3 Look at some simple, then complicated examples to calculate exactly
the integer or fractal dim. of a set of points on a curve or surface.

1/a) Linear distribution points:

d=InN(e)/In(1l/e) =In10/1In(1/0,1) = 1...... (int.dim.) .

*One can write more fully: N(e) = C(1/¢)?, but the limit ¢ = 40 on d = In N(e) +
In C]/In(1/e) makes disappear the term of C.
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Linear distribution on a curve:
d=1InN(e)/In(l/e) =1n10/In10 =1... (int.dim.).
N(£)20

N(E)= 171€ =10<No

€201 No=22 £=0)
Fig. 1.

AT\

.

3 ? N TG
£2:003; N80 >N(E)1/€2=34

Fug. 2.
Planar distribution of points:

d=1nN()/1In(le) = In34/1n 337 =

=2-In34/In33 =~ 2... (int.dim).

There was a sole step of the covering with a unique &°; it can be
continued (with finer €2), expecting a better approach to 2 (Fig. ).

KocH curve (1904) treated in MANDELBROT’s book (1977). The
increasing geometric procedure ) sets out from an interval Gy of
length Lo = g9 = 1, B) divides it into 3 segments of length ¢; = 1/3
and ) replaces the middle one by 2 segments of similar length 1/3;
the new curve G of Ny = 4 sides has obviously the total length
L; = Niey = 4/3. The continuation happens by repeating of the

2

former triple-step S3 (o — ) for all the 4 sides, namely the nth S3
results N, = 4" segments of length ¢, = (1/3)" with the total length
L, 2 Npen = (4/3)". Tending n — 400, so G, = G, ¢, = +0,
N,, = +oo and L, = Npe, — 400, then

In N In 4
dy = lim ——" - lim —— = 126185... (fr.dim.)
) ln(l/sn) n—oo In 3

and the fractional line G of N, segments — looking fuzzy — becomes
a continuous, but nowhere differentiable limit curve G (Fig. 4). This
set of points G, — G of dim. d. = 1.26 appears as trying to cover
more than a line, but reaching to fulfill less than an area only, having
nevertheless some properties of area, as a young boy’s scribbling with
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coloured crayons on a piece of sidewalk. — We will find such fractal
- like structures for basin boundaries of periodic attractors (see e.g.
[5] p. 244) and for boundaries between periodic and Ch-m (see e.g.
here, p.12) therefore this KOCH curve is very important for the nlin.
dynamics.

Fig. 8.
— IO LO=6‘°=1
0 1
i~ L4203
13= 81 1
"ﬁ% 4/9
1/92&;
K ,ﬁm
ON1/27 €3 1
Fug. 4.

3) CANTOR set (discovered in 1883) can be produced by a decreasing
geometric process. Namely, this also very significant concept for nlin.
systems can be origined by repeated removing finer and finer pieces
from the initial line (counter KOCH curve, by repeated complementing
smaller and smaller segments to the initial interval). — The construc-
tion’s procedure begins with a triple-step S3: «) to take an interval Ig
of length Ly = ¢¢ = 1, 3) to divide it into 3 parts of length e; = 1/3
and v) to omit the middle one and to keep the remaining Nj = 2
parts as union I with total length L; = Nje1 = 2/3. - Contin-

uation by repeating of S3; after the nth Sg, there is the remaining
I, with N, = 2" segments of length ¢, = (1/3)" and total length
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L, 2 Npen = (2/3)" (Fig. 5). At n — +oo, these limits appear:
I, —»1I,¢— 40, N, - +oc0, L, — +0, then
In N In2 In2
do= lim —" = lim " = == = 0.63092... (fr.dim.)
n—oo ln(]_/en) n—oo |n 2 In3

Consequently, the infinite point-series I of dim d, = 0.63... shows
itself more, than a point (of dim. 0), but less than a line (of dim.1).

On this discontinuous fr. set, one can generate a continuous fr. func-
tion, namely by integrating a distribution function of the total unit
mass at the start on the total interval Iy, later on the remaining and
decreasing CANTOR intervals Iy,...,I,, with increasing mass density.
After the nth step, when I, consists of N, = 2" parts of length
en = (1/3)™, the density is o = (3/2)" - ¢, for all the Npep,-
segments (obviously: Lygn 2 Npen - on = 2™(1/3)™ = 1 total mass)
and Zn = 0 for all omitted (vacant) segments of ;n (e1,2¢2,...,2%¢p;

Ln= 580" = 1-(2/3)" LutLn = (2/3)"+[1-(2/3)"] = 1 £ L).

o]
The mass on the interval I, = [0,2] at z € I, will be calculated by
integration

z

Ma(@) 2 [ 0al€)dt = Lngn = Nenen = 27 (1/2)" = (1/2)"

0

at N 29" < 2" 2 N, but at v = n one has M,(1) =27(1/2)" =1
(Fig. 6).

10

M, (X)
105

0 13 05 23 10
Fuig. 5.

Its figure is a fractional, but continuous line consisting of oblique
(increasing with tan¢ = (3/2)") and horizontal segments. - The
limit curve at n — +oo is the s.c. ‘devil’s staircase’ M(z) having

M'(z) = o(z) X2, 6(z - &)
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Fug. 6.

4) ‘Decreasing’ triangular set: Tp = \/T§7 T = %To, Ty = %To,...,

k23
T, = (43) ; en = (1/2)", N, = 3" d. = In3/Iln12 = 1,5737,...
(Fig. 7).

3. Alternate Definitions for the Fr.Dim.

3.1 The earlier introduced capacity d. to measure the fr.dim. of Str-atts is a
geometric metric (considering — without the frequency of orbit - the covering
set of cubes or balls in phase space), but also a numeric one (counting the
mentioned covering process often by computer). — The following alternate
definitions — giving for many Str-atts roughly the same dim. — will be good
controllers for the capacity d. [5].
3.2 Pointwise dim. (Pw-dim.) On a long-time trajectory in phase space,
we sign time-sampled points of motion in large number Ny, then place a
sphere of measure r at some point g; of orbit and count the points in it:
N(r). The proportion P(r,p;) = N(r,0;)/Ng gives us the (combinatorial)
probability of finding a point in this sphere (from Ny ones). — For a 1-dim.
(closed periodic) orbit will be (at » — 0, Ng -~ oo0): P(r,p;) = br; for a
2-dim. (toroidal, quasiperiodic) orbit: P(r,p;) = br?; for a general case:
P(r,0;) = br | consequ. [5]

WP b 4, fnally dy= lim 2208 8)

r—0 Inr

Inr Inr

For some attractor, d, is independent of g;; but generally d, = dp(0;), when
it is suitable to count an averaged Pw-dim. on the randomly chosen set of
points g1,...,0:,...,0M at M < Ny (e.g. distributed around the Str-att):

1 ud 1 M
M;P(T,Qi)%ardi’, IHM;P(T’Qi)_lna%dp-lnr7
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Fig. 7.

Q- Ly B P(rei)/M]

r—0 Inr

Practically, at Ny = 10% ~ 10%, one use M = 102 ~ 10%.
3.3 Correlation dim. (Cr-dim.). It is used successfully since 1983, mainly
by experimentalists, they find it often as related to the Pw-dim.

We discretize the (continuous) set to one of N points {g;}n in the
)2]1/2

(9)

phase space, then count the distances s;; = |4; — 95 2 [Zk(xki — Tk
or s;; = zp; — zk4|) for the Cr-function [3
J k J

1 mber of pairs 7,7 -y
B nu 51,7 _ -
C(r) = A}n_r)noo N2 ( with distances s;; < r ) N—*DO ;; =)

that is the number of points p; in each sphere of centre p; and radius r
1 at 7> s
0 at r <sy
performed here about every point, but at the Pw-dim. about M <« Ny ones
only). For many Str-att, one can find a power law (for r — 0)

(where the unit spring function 1(r — s;7) = ; the sum is

InC
C(r) = arde ,  from which the Cr-dim. originates : dg = lim H—(L)—
r—=0 Inr

(10)
3.4 Information dim. (Inf. dim.) This definition is similar to one of d.,
but it tries to take into account the frequency of visits each covering cube by
the trajectory (assumed: it is long enough to cover effectively the Str-att).
Having again a set of points Ny to discretize uniformly the (continuous)
trajectory and covering it with a set of N cubes of size €, one counts the
number of points N; in each of N cubes and the probability P; of finding a
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th

point in the "% cell:

N
Pi=N;/Ng (N<No) Y Pi=1. (11)
i—1
Then the information entropy (approached for small ¢, too) appears so:
ZP InP; ~ In(1/e)® = —d;Ine¢ (12)

and from this the definition of Inf. dim. origines [5]:

' I . P;In P;
g = tim &) A, Zifiln P (13)
e=01In(l/e) =0 Ine

I(¢) is a measure of the unpredictability in a system. — For uniform proba-
bility P; 2 N;/Ng = 1/N 2 P, it has a mazimum:
N .
I)2 - PmP;=-N PlP=N- L InN(e) = f(e), (14)
=1 N
moreover R
. I In N
dp 2 G g, BN A, (15)

—_— im
e=01In(1/e) e—01In(1/¢)
as it is provable, dj < d. in general.

- For a sole filled (and each other empty) cube Ny = Ny, P = 1 (so at
i # 1; N; = P; = 0), there is I(¢) = —~P1InP; = —1 -lnl = 0, consequ.
dr = lim.,g ﬁj = 0; this is the case of mazimal predictability.

Let still be mentioned the qth order Inf. entropy and dim. (1984; useful
in statistical mechanics and inf. theory):

L
anpZ, dg = El—n>10 lngl/s) (16)

Iy(e)

Its cases ¢ = 0,1,2 (with ¢ = 1+ Ag — 1 at ¢ — 0) make connection with
d., dr and dg so [5]:

N
Iy = WY PP=lN-1=IN = (), (17)
i=1
A N A
_ q _ ) AR TN
L = Al;xgo_anPP ;Pllnpz—l(v), (18)
L, = —anP = hm In2- NogCl(e) . (19)

.._)
=1 No
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Finally, it was proved (1983), that dg < df are lower bounds of dc, however,
they are very close for many known Str-atts:

dg < dy < de. (20)

3.5 Fr.dim. based on LiapUNOV (Lj.) numbers & exponents. As
memorable, there exponents \; = In L; measure the (rate of the) velocity of
2 trajectories (going out from Sp(e): |gy — o] < € and) diverging on the
attractor with |g, — §,] = oo (at n = o0), or converging off the attractor
toward another one with ¢, — §;, (at n — oo). During this dynamical
process, the initial conditions’ sphere Sp(¢) is imagined to deform into an
ellipsoid (in 3 dim.). - At a chaotic 2 dim. map gnt+1 = f(fn), the circle
Co(e) deforms into an ellipse having — after M, steps of iteration — the main
axes L1 and Lo, where L; > 0 at (i = 1,2) — as over the whole attractor
averaged values — are the Lj. numbers, their logarithm X; = InL; the Lj.
exponents. KAPLAN and YORK (1978) have proposed to calculate for a fr.
attractor this Lj. dim.: [2]-[5]):

dp =14 —2E1

In(1/L2) 1)

S’llfl

A DE .‘.3 = F(4,t) of 4 dim. é,é € E4) given for a dissipative system has
a POINCARE map dny1 = £(6n) of 3 dim. (n;dnt+1 € E3). For its Str-att,
one can find . _

Li>1, Lo=1, Lg<1i, (22)

that is the ellipsoid has tension, length-keeping, contraction in the 1%, 2nd,

3" main direction, resp. Because of dissipation, the ellipsoid’s volume is
less than the sphere’s one, so that

I1LsLs<1, but LjLy>1. (23)
This circumstance leads us to use the K. and Y. formula (as the special case
k = 2 of their general one) for Lj. dim.:
: By
A3
where it is difficult to measure the contraction’s Lj. number Ls.
For an N-dim. POINCARE map of such a system and at the order’
II>—L_2>...>,—L—;¢>...3N with f]f?...IkZ]., (25)
they have given for the Lj. dim. the following general formula [5]:

In(L{Ly... L N4+ X+ ..+ A
n(Lq1Lo k)ék— 1+ A2+ +k7 (26)

In(1/Lg41) Mt

dp =
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which is also a lower bound for d,, that is
dr < d.. 27)

Remarkable that FARMER (1983) has given for the Bir the following con-
nection (at Ag = Ap = A):

L In(1/a) + (1 —a)In[l/(1 — a)] A H(a)
dr=di=1+4 In(1/N) + (1 —a)In(1/X) b In(1/X) (28)
moreover at & = 1 — a = 1/2 and H(a) = In2, one obtains:
dr =di =d., (29)

and the map is like the horseshoe, or CANTOR map. ~ Worth mentioning
that the studied dynamical process can lead to a nonuniform POINCARE
map, when the different fr.dims often yield different results.

3.6A The nature exhibits fr. geometry in rich variety. Fr. curves (as frac-
tioned lines consisting of straight pieces with free length and direction): a)
border the coastal region of oceans, seas, lakes, b) similarly one of (pen)isle
countries (as Island, England, Norway, etc.) (with longer frontier at finer
measuring). Such (often randomlike) fr. formations appear (in the plane or
space): ¢) on the ice of lake, as clefts; d) at the lightning, as trace lines of
discharge; e) the contour line of mountain chains (looking from far); f) on
the snowflake, as its contour and surface; g) on the frost — works of win-
dow, as strange figures; h) at the leaves’ falling in windy autumn, as layered
spread of foliage; i) fleecy clouds on the sky; j) the (randomly) ramifying of
certain plants (e.g. cauliflower), bushes (e.g. blackberry); k) similar spread
of weeds among the plants; 1) sinking down sand grains during a sand storm;
ete. [2], [5]. (Fig. 8).

3.6B The artists’ sensitiveness to the fr. properties is remarkable. E.g.
at the beginning of the century, a) the impressionists have used coloured
points to make perceptible different effects in the space; b) in its ond half,
VASARELLY and others are using a rich world of colours and fitted geometric
forms for various effects of space. c) Today, some textile designers create fr.
figures for ladies’ wear [2], [5].

4. Fractal Basin Boundaries

4.1 Attractors and their basins. In most ln. systems (given e.g. by a
IDE), there is just one possible motion for certain input and one attractor:
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the equilibrium point. However, in nlin. systems (given e.g. by a nl.DE),
more motions can occur depending on the input parameter and more at-
tractors, too: equilibrium positions, periodic or limit cycle motions. These
last ones are intecresting now for us.

The range of values taken up by certain input or control parameter,
for which the motion tends toward a given attractor, is called a basin of
attraction in the parameter’s space.

If there are two (or more) attractors, then their frontier-giving tran-
sition from one basin to {an)other — is called a basin boundary. — In ln.
systems, it is expected, as a smooth, continuous line or surface and when its
parameters arc away from the input ones then their small uncertainties will
not affect the outcome. - However, as the research has proved it. many nlin.
systems exhibit nonsmooth, but fractal basin boundary; its existence is an
essential part in the behaviour of nlin. systems. Small uncertainties in in-
put, or other parameters may cause uncertainties in the outcome, so the pre-
dictability of motion can be impossible. — The (Fug. 9) shows certain smooth
(continuously traced) and fractal (dotted lined) basin boundary, namely the

fractal one for the HOLMES-MELNIKOV criterion (fp > é;{ cosh % 2 Co)
at the two-well potential problem (¥ = —~7 + 2(1 - .12)/2 + fo coswt), the

smooth one for the counter case (fg < Cp).

o
4.2 Let be mentioned the complez map L to the series of regular complex
function having a complex parameter { [2] [4]:

A ) ) A
Ingl = Tptl + WYnt1 = (TZ - 3!721 + 6) +i(2epyn + 1) = T, 6

The (black) domain of a) called as MANDELBROT set is the fr. basin of a
parameter (, for which the long iteration (at n — oc) will remain bounded:
lznt1! < K; the boundary of this domain shows fr. properties. - At
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POINCARE map written by irregular complex functions

A

Zn41

= Tpt1 + Watl = W(Tn,Yn) + iv(a:,,,,y”) flen)
one can meet a map b), which is different from a) in details, but related

in central role of the fr. basin (here an oval one) and its fr. boundary
(Figs. 10, and 11).

85
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5. Control of Chaotic Motions (Ch-m) into Periodic Ones

5.1 As it was stated (e.g. in 1.1), a Ch-m? cannot be predicted into fu-
ture. Therefore the applied sciences (e.g. the appl. math.-phys.-biology-
chemistry, etc.) intended recently to keep a firm hand on such a motion and
reduce it possibly into a regular one. In the last 3-5 years, the researches
have proved that the Ch. systems can be controlled really, that is their
Ch-m can be moderated into a periodic one.

In research institutes of various applied sciences, mainly interdisci-
plinary teams have found several ‘control algorithms’ (CA) for such pur-
poses. Of course, these CA look very specific with strongly different details,
but yet one can state some general steps Sty of common quality; such are
e.g.: St; diagnostic step: one observes — with suitable feedback, or mea-
suring tool — ‘just where is walking the Ch. system S’, that is in which
direction and measure are deviating its control parameter (Cp) values from
their normal ones; — Stz correcting step: one betters the Ch-S’s behaviour
by small perturbations of the mentioned Cj, to drive its Ch-m towards a
periodic one; St;v9, repeating steps of St; and Sty, too, for hindering §
from reverting to the Ch [7].

5.2 Stay here some example!

1) It is obvious, that the medical treatment of an ill person can be con-
sidered, as a CA (it is suggested also by our naming of St;). There is
now the illness, as Ch; S; happens by a clinical thermometer, ECG,
blood test, etc.; Sto happens by prescribed medicines, dietary meal,

~ gargling, inhaling, hydrotherapy, etc.: St;>g are the repetition of St;
and Sto; the restored normal state is the health.

2) Let be mentioned some successful CA from the last years! - a) OTT-
GREBORI-YORKE (Maryland) CA (having St-type steps), which was
the beginner of such experiences. — b) DITTO-RAUESEO-SPANO (Na-
vy) C, which reduced the Ch-m of an elastic band in magnetic field
into a regular one. — ¢) R. RoY and team (Georgia) increased the
energy product of a solid laser — by slowing up its Ch - onto 10-
15 times. - d) SHOWALTER and team with Hung. cooperation [7]
examined resultsfully- a simple CA to regulate the chemical Ch etc.

5.3 Let us close this paper with the hope that the applied mathematics -
in cooperation with other applied sciences — can promote surely the quick
development and the industrial propagation of this recent branch ‘CA of Ch-
m’, namely by more fine and profound discovery of Ch-m (and Cj, sequential
bifurcations, Str-att, fr.lines—dimensions-basin boundaries), by elaboration
of optimal CA for various Ch systems, etc. The expected success of the
‘controlled chaos’ promises a giant practical importance for the nest decades.

2which is signed e.g. just by fr. properties.
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Abstract

The origin of the excitation effects of gear train is briefly discussed and an adequate tooth
spring system model is presented, which enables to take into consideration the important
exiting effects, due from the mesh. The model is especially adapted for computer simula-
tion studies. Making use of this tooth mesh substituting model, the basic tooth vibration
features are discussed, based on simulation results. Influence of the mesh irregularities,
being always present, even in the case of ideal toothing, is presented. Further on, the
effect of the manufacturing errors on gear dynamic behaviour is analyzed by the Furier
development of the tooth stiffness functions on one hand, and the vibration characteristics
are studied under quasi stationary rolling down conditions, based on computer simulation
results, on the other hand.

Keywords: gear dynamic, computer simulation, non-linear vibration, parametric excita-
tion, tooth errors. -

1. Introduction

The gear transmissions are one of the mostly applied power transmission
elements in mechanical drive systems. In the case of their application in
vehicle transmissions, they are generally subjected to random load condi-
tions, varying in a wide range of load levels and excitation frequencies. The
schematic model of a drive system is represented on Fig. I. The gear box
on the input is connected to the prime mover, providing a variable T)(t)
input torque and on the output it is coupled to the final drive, presenting
a variable T(t) load as well, where t is the time. Both are varying in the
load and in the frequency range, too.

The gear trains as active vibration exciting elements can have impor-
tant effect on the dynamic behaviour of the whole transmission system.
They influence the léad histories on the connected parts on one side and
their own load conditions on the other side. On Fig. I s(¢1) refers to the
vibration exciting effect, as a function of the input ¢; angular displacement.
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Fig. 1. Schematic representation of a vehicle drive system

Because of the complexity of the problem, numerical simulation tech-
nics can be applied for system and for element characteristic analysis and
optimisation [1, 2].

In this contribution, some basic aspects of the non-linear vibrations
of gear trains are studied and some simulation results are presented for
gears with ideal normal and modified involute profiles and for gears with

, manufacturing errors, as base circle and pitch error.

2. The Origin of the Vibration Exciting Effects of Gears

The main vibration exciting effects of gears can be originated by two main
groups [3,4]:

— The effects caused by the stiffness variation of the teeth, on two levels,
namely the stiffness variation as the function of the contact point
location of the mating single tooth pairs and the alternating number
of teeth being actually in mesh. They are called generally as dynamic
effects.

— The effects introduced by contact irregularities at the beginning and at
the end of the pressure line, even in the case of ideal geometry, and the
exciting effects introduced by manufacturing errors and intended pro-
file modifications, the latter for improving gear characteristics. They
are called generally as cinematic excitation effects.

Other parameters as the friction influence are generally less important.

In the case of ideal tooth meshing, assuming that the teeth under load
do not deform, the stiffness variation can be described in the function of the
drive gear angular displacement, ¢1, as a simple periodic function, s(e1),
where the period is determined by the angular displacement, corresponding
to a single tooth contact length, Q. = ~15. At that model, the abrupt
stiffness change is accepted at the end points @4; and ¢p, of the pressure
line, see Fig. 2a. The load influence on the meshing characteristics is fully
neglected, so the resulting vibration is linear; no load influence is present.
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Fig. 2. Schematic tooth contact stiffness and reduced stiffness functions

However, even in the case of ideal tooth geometry, assuming elastic tooth
deformations under load, the tooth contact length varies in the function
of the load, so the stiffness function must be replaced by a two variable
function, §(¢1;Fn/b) , where Fy /b is the specific tooth normal load, Fy
stands for the tooth normal force, and b is the tooth length. The 3 reduced
stiffness function [4] contains already the load influence, so the resulting
vibration will not be linear. On the Fig. 2b, the load dependent stiffness
variation is schematically represented for ideal geometry and realistic tooth
meshing, i.e. the tooth deformations are taken into consideration. Ac
refers to the specific load as parameter. If real tooth with fabrication error
is considered, the period of the §(¢1; Fn/b) function is determined by the
angular displacement of the drive gear, corresponding to the all possible
combinations of contact of the drive and of the driven gear tooth profiles.

The tooth fabrication errors, as pitch, profile, etc. errors, result in
the non-uniform rotation transmission, see for ex. Fig. & for the profile
error, resulting non-linear effects, too. The influence of the intended profile
modification is load dependent as well.

Further non-linear feature is introduced by the non-linear single tooth
pair force-deflection characteristic at any fixed contact point, resulting vari-
able stiffness in the function of the load, see for ex. [5]. On the Fig. 4,
single tooth pair force-deflection curve is schematically represented, where
w stands for the tooth deflection. The theoretical, linear force-deflection
curve is indicated as a thin line.

The linear vibration model, discussed in detail by many authors, is conve-
nient for qualitative studies, or in the case of constant load drives, if the
specific load is in the middle or high load range. In vehicle drive systems,
however, characterised by important load variations, the load dependent
effects must be taken into consideration, so the non-linear gear vibration
properties are of prime importance.
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3. Gear Train Modelling and Basic Tooth Dynamic Behaviour
3.1. The Gear Train Model

For the study of the gear dynamic behaviour, a two mass model is applied,
see Fig. 5a, where the two rotating masses are coupled by a system of
springs, replacing the real tooth mesh, see Fig. 50, where 11,7y are the
torques, rp1,rpo are the base circle radii, ¢1, 9 are the real angular positions,
21,29 are the number of teeth, Jy,Jo are the moments of inertia, 7, is the
nominal ratio, 5 (1) is the single tooth pair stiffness, I; is the damping
coefficient, h is the backlash. Contact function §; (1) [4], corresponds to the
j-th tooth profile pair combination, and gives the travel along the pressure
line, corresponding to angular error Awps = @9, — 2 of the driven gear,
in the case of zero load, only the j-th tooth pair being in contact, where
©an = @] /in is the nominal angular position. F, and Fp are the elastic and
the damping force components of the tooth normal force. The values with
mark correspond to the reverse torque transmission.

The model enables the handling of the reverse torque transmission case, and
the individual treatment of the different tooth pair characteristics, so single
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tooth error influences can be modelled as well.
The equation, corresponding to the system takes the following form:

n
Ngr+ | YK (Ad — & (991)) crp1+ ren S (w1 Ao) Ao =Ty (1),
=1 ]
- . -
Taga+ | SO K (86 =& (o0) | - mat m2 8 (e1i80) - A = =Ty (1) (1)
=1 ]
where the points stand for the time derivatives, Ag = rp1 - 1 — Tp2-92 18

the travel error of the wheel measured on the pressure line, corresponding
to the actual angular position, relative to the nominal angular position, so
the term §(p1;Ac0) - Ao gives directly the actual elastic total force in the
tooth contact.

The §(¢1;Ac) reduced stiffness function contains all vibration excit-
ing effects, and formally can be applied as multiplication factor with the
actual deformation. In the general form, it can be developed by its Fourier

components:

V]

™

S(p1;080) = Co (Ao) + Z Ci (Ac) - cos (3 ko1 + l/k) (2)

k=1

where the load dependence is symbolised by the actual ‘deflection’ value Ao
Cy is the load dependent average. Cj is the k-th Fourier component, § is
the basic period, and vy stands for the phase angle.
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As it is known, this vibration exciting type belongs to the group of the
rheo-non-linear vibrations [6]. Because of the composed parametric excita-
tion function, Eg. (2), analytic solutions are not possible. The convenient
way for the study of the dynamic behaviour is the computer simulation.

Further on, the basic vibration properties of a simplified system will
be presented.

3.2. Basic Dynamic Behaviour.

The basic vibration properties of a simple one mass system with harmonic
excitation can be studied by the stability chart, see ex. [6].

Introducing into the Fq. (2) an @ = 2x periodic excitation function
with & = 1,v; = 0 and assuming a load independent case, we get a simple
cosine type excitation, see Fig. 6, where 7 = wj -t is a dimensionless param-
eter, wi being the input angular speed. Reducing the system of Egq. (2) into
a one mass system [7], the resulting homogeneous differential equation is a
rheo-linear, Matthieu type one.

s(T| ¢

$co
0 2T T 4T

Fig. 6. Simple cosine type excitation function

The w; system eigenfrequency in this case is w; = 1/Co/m, where Cp = ¢y
is the gear engagement spring stiffness [8], and m is the reduced mass of the
one mass system. The tooth angular frequency w, = w; - 21 = 27 f;, where
f. is the tooth frequency. It can be concluded from the stability chart, that
at wy input speeds of:

2w
wi=— 2. ov=1,2,..0 (3)

resonance points develop. In the gearing technics, the resonance point cor-
responding to v =2 is called as main resonance. Introducing the N dimen-
sionless number by:

w1 -2
N=2" =

Ws

(4)

the resonance points are at N = 2,1,(2/3),1/2,(2/5)...., and the main res-
onance corresponds to the value of N = 1. The N values in parenthesis,

Zoew
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corresponding to the odd values of v, are generally not important, and do
not develop in the presence of damping.

The ezcitation intensity can be characterised by the C’; = Ct/Cy ez-
citation intensity factor. Greater intensities give broader resonance regions,
characterised by more intensive vibrations, even in the case of the presence
of damping and inversely.

For the simulation study of gear vibration, one can generate by com-
puter simulation quasi stationary resonance curves, by simulating an accel-
eration process at a given nominal static specific tooth normal load, from n;
zero speed over the main resonance point. The diagram ordinate on the res-
onance curves is the dimensionless Vx value, the contact force magnification
factor, defined by the following equation:

VE = MaX ..y {VE (501)} ) VE (9‘91) = ]—FN—— (5)

where Fx /b is the total constant specific load on the teeth, and Fy;/b is
the real dynamic specific tooth load on the individual tooth in mesh, n is
the number of teeth actually in mesh, v1p is the rotation angle on the drive
gear, corresponding to one tooth mesh.
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Fig. 7. Stiffness functions for an ideal gear train, with real meshing

For real gear vibration excitation functions, Fg. (2), generally the k # 1,
nevertheless the basic characteristics of the parametric vibrations can be
fairly well represented with an ideal gear train model.
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Fig. 8. Vibration exciting intensity components for ideal gear with real meshing

To demonstrate the basic behaviour of a rheo-linear system as a reference
one, an ideal gear train model behaviour is simulated, with a quasi stationary
acceleration process. A linear single tooth pair force-deflection character-
istic, so constant stiffness at each contact point is applied. Evidently, the
stiffness values vary from point to point. Further on, the code WBlin refers
to this type of stiffness characteristic. The tooth deformations, so the load
dependent pressure line length is taken into the calculation, see Fig. 2b.
Consequently, the system is not exactly linear, but at a constant specific
load, it can be accepted as a good approximation.

Fig. 7 represents the § (¢1;Fn/b) reduced stiffness function, which
is the excitation one, and the s (¢1; Fn/b) function, which represents the
stiffness variation. The latter determines the system eigenfrequency. The
nominal (at zero load) contact ratio for this train is g5 = 1,7, so at high
specific load values the o >2. The §; contact functions for the individual
teeth enable to follow the mesh conditions of the gears [4]. Fig. § shows the
reduced Fourier components of the excitation function, the C’j excitation
intensity factors. The code WBIlin refers to a linear single tooth stiffness
characteristic.

Fig. 9a represents the resonance curve for this gear variant. For the
simulation, the A = 0 backlash value was chosen, for avoiding the non-
linearities involved in the case of tooth flank separations. A fairly low,
D, = 0.007 Lehr damping ratio was chosen, to assure the development of
the resonance points.

The gear and other parameters are given on the Figure. The marked
N values show the resonance locations. At lower speeds, even in the case
of a small damping, the resonances cannot develop. The relatively small
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elevations at n; = 900/min refer to the resonance at N = 2/3. The Figure
shows that at lower speeds the vibrations are relatively reduced, but at the
value of about 200/min, important vibrations are present. Especially the
resonances at N=1,1/2,1/3, 1/4...are important.

Further on, several parameters, introducing non-linearity, are studied.

4. Non-linear Vibrations in the Case of Ideal Gear Geometry

For the study of the effects of some basic gear parameters and meshing prop-
erties introducing non-linearity, the previously applied real gear train with
ideal geometry was chosen. Real tooth engagement was applied in all cases.

The real tooth engagement means that the pressure line length is load
dependent, so the reduced stiffness function, so the excitation properties
vary in the function of the load. Further on, the variable contact length
influences the average damping as well. So, the influence of the nominal
load, the realistic backlash and the non-linear single tooth characteristic
was studied. For all cases, quasi stationary acceleration or deceleration
processes were simulated and the ratio of the contact force magnification
factor was calculated, see Eq. (5).

Fig. 9b represent the basic effect of the backlash, involving important
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non-linearity. For the sake of the better representation of ‘the basic features,
the previously applied damping ratio was applied. The Vo = 0 values in-
dicate the separation of the tooth flanks, enabled by the presence of the
backlash. Characteristic non-linear resonance shapes develop, with reduced
peak values, as compared to the case of Fig. 9a. Because of the average
stiffness reducing effect of the backlash, the resonance regions are at lower
speeds. Fig. 9c represents the influence of the nominal specific load. in
accordance with the reduced stiffness exciting components on Fig. 8. The
increase of the vibrations at the resonance points involves increased tooth
flank separations, so the resonance locations move to the direction of lower
speeds. Because of the increased C'}, values, the vibrations are more inten-
sive, with increased contact force elevation factors.

Fig. 10 presents the simulation results for the same gear train, with
backlash and realistic damping ratio, in the case of WBlin, linear single
tooth pair stiffness characteristic. At lower nominal specific load values the
tooth flank separation remains at the resonance points, however, at higher
specific loads it disappears. The peak values are generally lower as in the
cases of small damping, and the higher order resonances tend to disappear.
At Fy /b=1000 N/mm specific nominal load, the contact force magnification
factors are considerably reduced, as it follows from the vibration exciting
intensity factors.

The Fig. 10b shows a deceleration process. The opposite running direc-
tion of the main resonance point results in the broadening of the resonance
region, and it extends to the resonance at N=1/2. This feature is well
known in the field of the non-linear vibrations.

On Fig. 12 the influence of the non-linear single tooth pair stiffness

characteristic is presented. The applied stiffness curve type is as it is on the
Fig. 4, with a progressive beginning section, and linear later. The stiffness
reducing effect of the gear body design (as gear rim) was taken into account
too [8]. The code for this single tooth pair stiffness characteristic is WBHEKp.
The reduced stiffness and stiffness function show important changes. related
to the WBIlin case, see Fig. 11. The Fourier components of the vibration
exciting intensity are shown on Fig. §.
Based on the resonance curves on Fig. 12, one can see that the vibration
effects are smoother than for the WBlin case, see Fig. 10. The origin of
it is the smooth beginning part of the single tooth pair stiffness curve, the
smaller average stiffness and the increased contact ratio. resulting higher
average damping. The load influence, however, is expressed.

At F,/b=50 N/mm specific load, no tooth flank separation occurs,
and the main resonance points are at lower speed, because at that load, the
small stiffness region of the characteristic curve dominates. The resonances
are reduced, too, related to the WBlin case. At high specific load values the
contact force magnification factors decrease.

Based on the results of the simulations, one can state that even in the
case of ideal tooth geometry, important non-linear behaviour is found. Con-
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sequently, in gear applications, characterised by important load variations,
the non-linear effects can not be neglected.

5. Dynamic Behaviour in the Case of Gears with Profile Error

For the study of the profile error influence, the same gear train was applied.
The profile error was taken onto the drive gear, as a base circle error on
each tooth, of fro = —20 um, which corresponds to a DIN7 (ISO) quality
class [9]. This driver was rolled together with the driven gear, having ideal
tooth geometry.

On Fig. 19 the reduced stiffiness and the stiffness functions with the C’}, com-
ponents, and the contact functions are shown, for linear single tooth stiffness
characteristic (WBIlin). The § excitation function changes considerably, re-
lated to the ideal geometry, especially at lower specific load levels. The C’;c
excitation intensity factors increase similarly, especially at low specific load

levels.
On Fig. 14a an h=0 backlash value was applied, for the sake of com-



100 J. MARIALIGETI

s | N/mmpm
1500 201
600 —
wo/—-
350 —
a0 >F
100 —
50 —1
01
10—
B /b
{N/mm)
il
s+ \Jdi J; /
'E,-—y Arm _‘ﬂ. ‘Ej |E'j-| Arjﬂ _F" ‘Ej

Fig. 11. Reduced stiffness and stiffness function for non-linear single tooth pair
stiffness characteristic

PP e
R o

M =

BT B s Sk

0

T T L
. Ib=S00Nmm- T/ 13— 117 LN
sz‘d“zI:o,oss‘_, 177 5
1 [
WBHKp
‘ ! i i
2[f; T6 100N T S T TN ]
Vs 1D,=0056 sk i T

I T T
300 600 900 n41200  [1/min]

Fig. 12. Resonance curves for non-linear single tooth force-deflection characteristic

parison of the results on Fig. 7a. In spite of the normal damping, important
vibrations develop, with an expressed hardening type non-linear resonance
at the main resonance point. The Fig. 14b represents the resonance curve
at the same specific load level as previously, with backlash. Because of
the important vibration effects, tooth flank separations occur practically on
the hole speed region, with important softening type non-linear resonances.
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The real resonance point locations do not correspond to the nominal ones,
see Fig. 14a.

- At higher load levels, the vibration extremities are decreased, but they
are greater than for the ideal gear. Based on the simulation results, one can
state that the greater vibration intensities, especially at lower specific load
levels, result in increased dynamic loads, which is magnified by the decreased
average damping, due to the rcal contact ratio decrease. Important non-
linear characteristics dominate the vibrations. At higher load levels the
general vibration shape is similar to the ideal case, see Fig. 14c and 9b, at
low damping ratio. At normal damping, however, characteristic differences
are found, see Fig. 14d and Fuig. 10c.
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6. The Influence of the Pitch Error

For the study of the pitch error influence, fy, = £0.02 mm error was taken
on all drive gear teeth. For creating this type of error, it is enough to displace
each second tooth profile; it results automatically an opposite sign pitch
error with the following tooth flank. For the simulation, this gear was taken
into meshing with a driven wheel of ideal tooth geometry, and WBlin type
single tooth pair force-deflection characteristic was applied. The resulting
reduced stiffness and the stiffness functions and the §; contact functions
are presented on Fig. 15. The C’,IC intensity components are represented
on Fig. 16.

The basic period angle of the excitation and the stiffness function is
now the double as previously. This corresponds to the fact that each second
tooth is displaced with the given pitch error, giving so a double period. That
1s why new C’,: components appear, see Fig. 16. The k' values on Fig. 16
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refer to the Fourier indexes of the ideal tooth geometry. For the sake of
comparison, the ideal gear component is indicated, too.

For the better presentation of the basic vibration characteristics, a simula-
tion was realised with a low damping ratio, see Fig. 17a. In accordance with
the new C',i_ vibration excitation intensity factors, new resonance points ap-
pear; the resonance curve shape differs considerably from that for ideal gear
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Fig. 17. Resonance curves for gear train with pitch error

geometry, see Fig. 9a. This characteristic remains even at higher damping
ratios, see Fig. 17bed. Above the input speed about n;=200/min., the vi-
bration peaks remain practically at the level of the resonance points. The
maximum values at the main resonance point remain practically on the same
level. So, intensive vibration is found on the whole speed region. An inter-
esting result for that case that the resonances at N =2/3 appear, which was
not the case for normal gears.

The N values on Fig. 17 are similar to the previously defined N values,
but they are calculated with the actual average stiffness, belonging to the
given specific load.
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7. Conclusions, Future Work

The simulation results of gear train dynamic analysis presented in this paper
have shown .that even in the case of ideal tooth geometry, important non-
linear effects develop, if the real tooth meshing conditions are taken into
consideration. Similarly, the tooth errors involve important load dependent
features. For enabling the treatment of these phenomena, a complex dy-
namic model is needed and careful tooth meshing analysis is to carry out.
On the other side, the single tooth pair force-deflection curve type influences
considerably the dynamic behaviour of the gear train, too.

Future work is needed for the study of the dynamic behaviour in the
case of realistic gears with randomly distributed fabrication errors, and un-
der continuously variable load conditions.
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Abstract

The determination of dynamic responses (accelerations, stresses) of linear systems with
large number of degrees of freedom costs much work and time. Practically the same results
can be obtained by using an appropriate method by which the given dynamic system can
be reduced achieving less cost and time required for computation.

Retaining the structure of physical model the static reduction is the most frequently
applied process. Elaboration of lumped mass matrix of bus and commercial vehicle models
is heuristic, therefore only the stiffness matrix of the given system is problematic.

Considering the computational possibilities there are more ways to determine the
stiffness matrix of a simplified model. A reduced stiffness matrix, elaborated from the
results of dynamic analysis of finite element models, is competitive from the point of view
of accuracy and computational costs.

Keywords: FEM analysis, structural dynamics, static condensation, vehicle dynamics.

1. Introduction

Concerning the calculated outputs of dynamic systems the increase of de-
grees of freedom (DOF) causes several problems, such as: the computational
time increases exponentially, where the power term is about 3 and 4, and
on the other hand the punctuality of computation is reduced. The reason
of these failures is the more segmented, detailed model. Therefore the time
or frequency domain functions can be calculated with smaller time or fre-
quency sampling intervals and required time to calculate the independent
variable, as the answer function is proportional with the 2nd-3rd power of
the unknown functional.

By increasing the DOF of model, the information obtained by the
computation also increases. Although the information must be considered
very carefully, hence the possibility to measure data on a real system is
very much limited in comparison with the calculated points of available
model. The results obtained from computation are adjusted according to
real measurements.
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From the afore-mentioned facts it is clear that in the selection of the
number of unknown parameters the designers should be careful, hence the
computational facilities allow us much freedom. Therefore the models de-
signed for static modelling must be simplified for dynamic analysis. From
the reduction technics the method of static condensation is the most known.
A practical implementation is shown in this paper, used to model vehicle
undercarriage systems.

2. Dynamic Structure of Vehicle Undercarriage Systems

The description of the deformation of vehicles, vehicle undercarriages is
based very often on the concept of discontinuity modelling. The required
parameters, such as the mass, stiffness and damping parameters are sought
from finite element (FEM) modelling. For example the mechanical model
of a bus structure can be represented by 300-500 nodes, where each node
has six DOF.

In the calculation of dynamic signals the number of DOF can be re-
duced significantly, on the one hand to half, if the nodes only modell mass
points, and on the other hand to a further one third, if only the vertical
dynamics of vehicle are considered. Here we suppose that from the vertical
excitation no lateral force exaggeration exists, hence no lateral vibration
occurs. (A small scale lateral displacement can only occur due to three-
dimensional geometrical and stiffness constraints of the model). The DOF
of dynamic model therefore is equal with the number of nodes.

The knowledge of mass distribution of system may lead to further
simplifications. The size of useful load can be compared with the own mass
of vehicle, where both loads are acting on the main frame of the vehicle.
During the modelling phase the designers ought to concentrate on the exact
description of the, before mentioned phenomena concerning the dynamic
impacts. Then the dynamic models of buses could be described by 140-200
DOF. :
Although, we can state without going into details that the global equa-
tions of motion of a bus can be described with appropriate 40-60 DOF,
moreover if we only consider the bending modes then this number can be
reduced to further 812, which results in two times smaller DOF.

3. Derivation of Stiffness Matrix of the Simplified Dynamic
Model

After the selection of the unknown parameters of dynamic model the system
matrices of the static finite element model have to be transformed into
the dynamic freedoms. In the following, only the reduced stiffness matrix
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is considered. In theory the solution is simple: after the participation of
stiffness matrix the unimportant unknowns of the dynamic calculation are
eliminated (static condensation, Guyan algorithm):

ERIEEHE L

Xy = =S5, So1%1 , (2)
Sredx1 = F, (3)
Sred = S11 — 51252—21 So1 . (4)

The implementation of reduced stiffness matrix is not problemless, hence
the FEM programs existing in the market have no such option, moreover
the stiffness matrix of the system has no access. The stiffness matrix of
dynamic systems thus can only be sought from the optional facilities of
FEM programs. It means that the elements of the condensed matrix are
built up from 5 digit, rounded results of the internal calculations. Although
this data file consists the errors of numerical calculation, too.

The stiffness matrix of the dynamic model can be determined based

on the concepts of

a, kinematic load,

b, flexibility matrix and inverse matrix theorems or instead of the con-
cept of static load the matrix can be obtained as a result of dynamic
analysis, as

¢, the combination of eigenvectors and eigenvalues.

Concerning the above mentioned methods the ¢ variant has given the
best results obtained from the tests made on different underframe structures.
This method needs less work and computational time and the obtained re-
sults are satisfactory concerning numerical punctuality, too (the comparison
of different methods is summarized and presented at the GAMM’94 Confer-

ence in Braunschweig).
The meaning of stiffness matrix reduction based on the knowledge of

modal parameters (eigenvalue and eigenvector) is as follows:

e the eigenvalue analysis of a mechanical system can only be done, if
the mass matrix is non-singular.

If this condition is satisfied, then the system has to be transformed
into the place of degrees of freedoms of the non-zero elements of the mass
matrix, which means static condensation.

R HEEEEIFEHE

Xy = —S53 Sa1x1 (6)
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Mi1X1 + Spegx1 =0, (7)
Sred = S11 — S1255; Sa1 - - (8)

The solution of eigenvalue problem simply means the determination of the
modal parameters of the simplified model. From the results, the missing ele-
ments of eigenvalues and that of the reduced mass matrix can be calculated
by the inverse transformation method. If the mass matrix of the simplified
model is identic, then the equation of motion described in the subcoordinate
system is as follows:

TTET G+ T7S,e4Tq = 0, 9)

Eq+Aq=0, (10)

from which the searched condensed stiffness matrix:
Sreq = TATT | (11)

where

A - diagonal matrix, consisting the eigenvalues (square values of own
frequencies),

T - normated eigenvector matrix sought from the non zero elements of
mass matrix.

The way to determine the reduced stiffness matrix is as follows: in the
places of degrees of freedoms to be reduced, identity mass distribution is
considered and then the eigenvalue problem is solved as an option of FEM
analysis. At the end, when the modal parameters are selected, the matrix
is built up and the required operation is carried out.

4. Numerical Investigation and its Results

In the afore-mentioned paragraph the obtained condensed matrix can have
different errors, such as the errors of the numerical procedure, which can be
introduced through the process of condensation of mass matrix, the itera-
tion procedure of eigenvalue analysis and from the truncated and rounded
presentation of modal parameters (eigenvalue, eigenvector) in the data sheet
»of FEM analysis. While the error mentioned at last can be approximated,
the errors of numerical calculation are unknown (besides the eigenvalues).
In the evaluation procedure of reduced mass matrix punctuality, the
static equilibrium equations can be considered as the basis. If the flexible
constraints of the system are removed then a free system is obtained, whose
stiffness matrix only has internal contact forces. The force system of the
kinematical loads existing in the rows of the stiffness matrix must fulfill the
conditions of weight point and moment. This means that the sum of the
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elements in the rows of the matrix and the moments calculated to the weight
points must be zero. Although the satisfaction of the equilibrium condition
is only a necessary condition. Further information can be obtained to the
reliability of the condensed stiffness matrix, if the modal parameters are
calculated to the free systems, too. Without going into details it is evident
that the eigenvectors used as kinematical loads must fulfill the equilibrium
conditions. The shape of eigenvectors, the number of nodes, i.e. lines, and its
situation given for a construction (for example bus system), gives additional
information for the experts in order to check the computed results. Hence,
in this way the contents of errors can be detected.

The numerical analysis is carried out for a grid system of a bus and
in the other hand four FEM bus models were under investigation by the
application of SUPERSAP software package. The reduction has been made
in the vertical plane of the underframe of the vehicles, according to the
imagined vertical deformations of beam elements.

This flexible beam represents the average reduced stiffness of logitu-
dinal underframe structures, incorporating the effect of lateral beams, too.
Then the global bending stiffness parameters are given.

The eigenvalue problem is only solved to the free system comsisting a
grid structure. The applied FEM program is only capable to handle the
modal parameters of constrained system, therefore the model is fixed with
small value of stiffness.

The goal of investigation is to prove the applicability of the mentioned
theorem. The most important information of the given figures in the ap-
pendix can be summarized as:

o the DOF of the system and its reduced counterpart,

e the size of the elements of reduced matrix,

o the geometrical location of weight point and

e the sum of errors in one row of the matrix, which is defined as the sum
of elements and their moments.

5. Conclusions

1. The reduced stiffness matrix practically satisfies the equilibrium con-

ditions. The values of the sums derived in every row have not reached
the size of rounded errors.
For example concerning the grid model of bus system, the maximal
rounded error 0.5, due to the 5 digit displaying (while in case of 5th
order approximation, the roundoff error is'5), while the error conse-
quence concerning the moment is not else than the maximal distance
multiplied by the value of error 0.5*480 = 290.

2. Concerning the last model the values of errors are greater and the
sum of moments shows a large scale deviation in a range, which can
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be located geometrically. The probability of this phenomenon can be
found in the fault of FEM program made for statistical analysis. This
comes from the investigation so that the errors deduced for the moment
are very close to the already determined values by the application of
kinematical load (a, variant). Although by this the usefulness of the
concept, i.e. that the matrix is derived by the modal approach can
be counteracted with the results obtained by the static condensation
method, moreover it can be deduced that the relative error is within
the range of round off errors.

3. The above statements are concerned with the simplification of an order
of two models, therefore one can conlude that such a large size of
reduction can be used in numerical way.
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6. Appendix A
Model of the side wall of the bus

o i d 7 ) )
static model: 171 DOF
dynamic model: 9 DOF
Smax= 5.5180E4 Spin™ 121.6 [10 N/cm] Xmax= 480 [cm]
max. round off error: AF=0.5 AM=240 ’

DOF I 2 3 4 5 6 7 8 9
AF 037 2077 096 -2<0.55 023 055 096 077 037
AM 41 -135 102 =28 0.0 28 -102 135 -41

FE model of the Midi-bus
=
B el ——
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Jl
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N

static model: 1969 DOF
dynamic model: 8 DOF
Smay= 6-4682E4 Smin= 1.0784 [-10 Nicm] Xmax=330 [cm]
max. round off error: AF=0.5 A M= 165
DOF 1 2 3 4 5 6 7 8
AF -0.05 0.03 -0.02 0.36 -0.56 0.36 002  -0.08
-4 16 -95 140 -85 81 -67 13

AM
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FE model of the citybus (vers. A)
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Abstract

The dimensioning of vehicle body structures for service fatigue life is a highly complicated
task in its every stage. Namely the appropriate structural modelling for dynamic analysis
and the elaboration of realistic loading and design conditions (loading and design spectra)
for the total duration of their life. In this paper the dynamic analysis of a bus is presented
as a feasibility study using finite element model of large number of degrees of freedom.

Keywords: large vehicle models, modelling by finite elements, dynamic analysis, simulation
of road profiles, evaluation of response spectra.

1. Introduction

The failure of mechanical structures due to material fatigue is usually orig-
inated from local yields (dislocations) in the material. Prediction of fa-
tigue life of one or more elements of a large mechanical system necessitates
the precise knowledge of the position and process (in time) of local stress
concentrations producing errors or deterioration of it. This fact demands
the application of well-detailed structural, usually finite element models of
large number of degrees of freedom. A number of Hungarian researchers
have successfully studied the theoretical, computational and measuring as-
pects of this problem ([1], [2], [3]), etc.). However, the actual calculations
have been carried out on smaller mechanical models since earlier there were
no satisfactory computational possibilities. Nowadays some developments
can be observed in this area namely some of the professional finite element
programs are currently available (NASTRAN, COSMOS/M, ANSYS, etc.).
When the number of degrees of freedom of a finite element model is about
some thousands the most useful way is the application one of these finite
element programs.

Each phase of strength calculation of vehicle body structures for service
fatigue life is a very complex and complicated task. First phase is the
determination of representative sets of loads that are valid for the total
duration of life of vehicles. These loads, for example, originate from the
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roughness of different kinds of roads, manoeuvres like steering, acceleration
or braking and from the excitation of the engine and power transmission.
Moreover the payload is usually changed during the service life of a vehicle.
Second phase is the elaboration of an appropriate vehicle structural model.
Actually a vehicle body can be described as damped linear elastic system
while the behaviour of suspensions and tyres are non-linear (damping and
stiffness characteristics). Having determined the required vehicle responses
the last phase is the fatigue life calculation itself.

For the reliable strength calculation for service fatigue life of vehi-
cles experimental data are indispensable. Considering the input loads it is
necessary to know the (measured) excitations of different roads and their
expected rate of occurrence during the vehicle life of duration. Besides the
road roughness measurements there are publications in the modelling of road
profiles and surfaces ([4], [5]) since it is not so easy to measure parallel tracks
below left and right wheels simultaneously. Moreover the designers are much
more interested in the expected behaviour of vehicles over a large number
of roads of the same class than in their detailed behaviour on a particular
road. In the second phase especially the determination of the stiffness and
‘damping characteristics of tyres as well as the damping of vehicle bodies re-
quires measured data. At last, in the third phase, the elaboration of design
fatigue -curves requires experiments [6].

In this paper dynamic analysis of a bus structure is carried out by finite
element method using the COSMOS/M finite element program. The number
of degrees of freedom of the applied finite element model is 1852. Excitations
are derived from two-dimensional power spectral density function which
describes the roughness of road surface in vertical direction.

2. Simulation of Road Excitations

Measuring parallel road profiles simultaneously is always a very complicated
and difficult operation. Final (road profile) data from measurements are
usually carried out indirectly after filtering, signal analysis and unavoidable
data transformations. Therefore there are numbers of attempts for the spec-
tral representation of road surfaces ([4], [5]). In the road surface simulation
we follow the method contained by paper [5] in which it is proved that from

0.5G :
Glng,ny) =~ (1)

- L]
,/n% -+ n%

the two dimensional power spectral density (psd.) function, the next one
dimensional psd. function can be derived for random description of road

profiles

Go

Gi(n) = - (2)
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In the previous equations Gy is constant moreover ng, ny and n are spatial
wave numbers.
In paper [4] for the random representation of road profiles the relation-

ship
Go
G = =, 3
l(n) 25 ( )
is suggested where 0.01 < n < 10 cycles/m and values for Gy are as follows,
motor way : Gp =3+ 50 x 10_8,
major road : Gg = 3+ 800 x 1078,

minor road :  Gp = 50 + 3000 x 1078,
where G1(n) is the spectral density of road roughness in m3/cycle and the n
the unit of n is cycle/m. The unit of Gy is compatible with other quantities
in Eq. (3). It can be proved by direct calculation that the results in paper [5]
are applicable for the Fg. (3). Having applied it we get the two dimensional
psd. function

G

4)
—3.5 (
1.748 \/n% + ”12/

G(ng,ny) =

that will be used for the isotropic description of road surface roughness.
When a professional finite element program is applied the user is con-
strained by its possibilities. In case of the most finite element programs sim-
ilarly to COSMOS/M the response spectrum analysis can only be performed
for diagonal input spectrum matrix that is the cross spectra are assumed to
be zero. Therefore it may not be applied directly for road surface excita-
tions since cross spectra among left and right wheels are not negligible. This
difficulty is overcome when the psd. functions of tracks below the wheels are
represented by their realizations along the road in the function of driving
distance. Using SHINOZUKA’s method [7] the road profile realizations can
be simulated from the psd. function given by Eq. (4) besides the value of
Go = 50 x 1078 which corresponds to major roads of better quality (Fig. I).

3. Model Elaboration

The discussed finite element model shown in Fig. 2 is elaborated on the
basis of an actual bus. Frame structures of bus bodies usually have linear
elastic properties, however, the behaviour of suspension systems and tyres
is non-linear. In some cases these nonlinearities may not be neglected, for
example in the case of stability problems or studying the effect of extreme
road irregularities, etc. In other cases the characteristics of suspensions
and tyres can be approximated by linear ones with acceptable errors when
road vehicles travel on country roads of good or average quality with con-
stant speed. Linearization of these characteristics is based on their nominal
operating data released by manufacturers.
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Road profiles

Left track
Right track
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Fig. 1. Simulated road realizations below left and right wheels

The continuously distributed mass of the studied bus is divided into
nodes in a manner that its mass matrix is a lumped one. As it was mentioned
above the stiffness and damping of suspensions and tyres is approximated
by linear characteristics while structural damping of bus body as Raleigh’s
damping is taken into consideration assumed to be proportional to the stiff-
ness matrix. Kinematic excitations of road roughness in the function of time
are derived from the simulated road profile realizations assuming constant
travelling speed of 20 m/s. Time delay between front and rear wheels is
considered.

Number of degrees of freedom of the studied finite element model is
1852 and the number of nodes and mass points is 325 and 207, respectively.
The number of beam elements is 533 and 128 shell elements are built in the
body of the bus model.

4. Dynamic Analysis and Results

In service, bus bodies among others are subjected to the vertical excitation
of road surface roughness describing as a stationary random process. Actu-
ally the applied time history functions for excitations are derived from the
road profile realisations of this random process. In compliance with it the
response stress-time history functions can also be considered as realisations
of a stationary random process. Being in the possession of fatigue design
curves these stress time history functions can be used for the estimation of
the average fatigue life [8].
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/]

Fig. 2. Wire network sketch of the studied finite element model

Calculations of stress time history functions are carried out by the
modal time history analysis module of COSMOS/M in two phases. In the
first phase the lower 45 undamped natural frequencies and mode shapes are
calculated up to 20 Hz. This upper limit of natural frequencies is enough to a
correct dynamic stress analysis. Then, in the second phase, using these nat-
ural frequencies and mode shapes the stress-time functions are calculated in
the required equidistant time points. The effect of the concentrated viscous
dampers, built in the finite element model, is calculated in each time step
by an iterative process. Similarly the material damping of the bus structure
is taken into consideration during the second phase of the dynamic analy-
sis. In Figs. 3 and 4 the resultant of axial stresses (from bending moments
and axial forces) and the shear stress (from torsion) can be seen respectively,
arising at one end of a beam element located in the left side longitudinal web
of the chassis of the bus. These stress-time history functions are made only
for illustrations. In case of actual calculations the lengths of the considered
time intervals can be increased to the required lengths.

If statistical nature of response stress records is necessary there is possi-
bility to generate their power spectral density functions using Fourier trans-
formations. For example in Fig. 5 the power spectral density function of the
axial stress record is demonstrated which is shown in Fig. 3. On the basis of
power spectral density functions the standard deviations of response stresses
can also be calculated. In case of the presented axial stress the magnitude
of its standard deviation is 8.227 x 10% [N/m"2).
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Fig. 4. Shear stress from torsion
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5. Conclusions and Future Tasks

The analysis presented in this paper has shown the potential applicability of
one of the professional finite element programs for the calculation of fatigue
life of large vehicle structures considering vertical excitations of road surface
roughness.

In future there are a lot of problems to solve, for example:

o Determination of representative sets of roads that characterize the
realistic road excitations for the total duration of life of vehicles. (By
measurements and on the basis of literature data.)

o Determination by measurements of material damping in bus body
structures.

o Theoretical and numerical study of the accuracy of linear approxima-
tion of the non-linear suspension and tyre characteristics, etc.

o Detailed modelling of the reaction of the passengers, etc.
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